通过非稳态脉冲动力学方法,考察了载体MgAl2O4和α-Al2O3以及助剂La2O3对Ni催化剂催化解离CH4性能的影响. 在以前的积炭方法中, CH4的解离在很大程度上受积炭的影响. 这里采用非稳态脉冲方法可以得到在新鲜的Ni活性位上CH4解离的本征动力学信息. 在排除了传质和传热的影响之后考察了在Ni/α-Al2O3, Ni/La2O3/α-Al2O3, Ni/MgAl2O4和Ni/La2O3/MgAl2O4催化剂上的CH4解离动力学,求得催化剂表面上平均每个Ni活性位上CH4解离的活化能分别为90.9, 111.8, 79.5和85.9 kJ/mol. 可以看出,载体MgAl2O4比α-Al2O3更能降低Ni上CH4解离的活化能,而La2O3的加入会提高CH4在Ni上的解离活化能. 通过动力学方法,定量地描述了载体和助剂对Ni活性位上CH4解离能力的影响. 同时CH4解离的活化能和指前因子之间存在着补偿效应,这在一定程度上削弱了助剂和载体对Ni上CH4解离的影响.
参考文献
[1] | Bradford M.C.J.;Vannice M.A. .CO_2 reforming of CH_4[J].Catalysis Reviews. Science and Engineering,1999(1):1-0. |
[2] | Otsuka K;Takenaka S;Ohtsuki H .[J].Applied Catalysis A:General,2004,273(1-2):113. |
[3] | Liang Q;Gao L Z;Li Q;Tang S H Liu B C Yu Z L .[J].Carbon,2001,39(06):897. |
[4] | Jia J;Wang Y;Tanabe E;Shishido T Takehira K .[J].Microporous and Mesoporous Materials,2003,57(03):283. |
[5] | Wei J M;Iglesia E .[J].Physica Chemistry Chemical Physics,2004,6(13):3754. |
[6] | Osaki T;Horiuchi T;Suzuki K;Mori T .[J].Journal of the Chemical Society,Faraday Transactions,1996,92(09):1627. |
[7] | Liao MS.;Zhang QE. .Dissociation of methane on different transition metals[J].Journal of molecular catalysis, A. Chemical,1998(2):185-194. |
[8] | Jansen A P J;Burghgraef H .[J].Surface Science,1995,344(1-2):149. |
[9] | Bengaard H S;Alstrup I;Chorkendorff I;Ullmann S Rostrup-Nielsen J R Norskov J K .[J].Journal of Catalysis,1999,187(01):238. |
[10] | Yang H;Whitten J L .[J].Surface Science,1993,289(1-2):30. |
[11] | Egeberg RC.;Ullmann S.;Alstrup I.;Mullins CB.;Chorkendoff I. .Dissociation of CH4 on Ni(111) and Ru(0001)[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2002(1/3):183-193. |
[12] | Borowiecki T.;Giecko G.;Panczyk M. .Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons II. Ni-Mo/Al2O3 catalysts in reforming, hydrogenolysis and cracking of n-butane[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2002(1/2):85-97. |
[13] | Gadalla A M;Bower B .[J].Chemical engineering science,1988,43(11):3049. |
[14] | Xu Z.;Zhang JY.;Chang L.;Zhou RQ.;Duan ZT.;Li YM. .Bound-state Ni species - a superior form in Ni-based catalyst for CH4/CO2 reforming[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2001(1/2):45-53. |
[15] | Martínez R;Romero E;Guimon C;Bilbao R .[J].Applied Catalysis A:General,2004,274(1-2):139. |
[16] | Pan Z W;Xie S S;Chang B H;Sun L F Zhou W Y Wang G .[J].Chemical Physics Letters,1999,299(01):97. |
[17] | Teixeira A C S C;Giudici R .[J].Chemical Engineering Science,1999,54(15-16):3609. |
[18] | 陈诵英;孙予罕;丁云杰;周仁贤, 罗孟飞.吸附与催化[M].郑州:河南科学技术出版社,2001:195. |
[19] | Fukada S;Nakamura N;Monden J;Nishikawa M .Experimental study of cracking methane by Ni/SiO2 catalyst[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2004(0):1365-1369. |
[20] | Wei J;Iglesia E .[J].Journal of Catalysis,2004,224(02):370. |
[21] | Conner W C Jr .[J].Journal of Catalysis,1982,78(01):238. |
[22] | Bond GC.;Kral H.;Lercher JA.;Keane MA. .Compensation phenomena in heterogeneous catalysis: General principles and a possible explanation [Review][J].Catalysis Reviews. Science and Engineering,2000(3):323-383. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%