欢迎登录材料期刊网

材料期刊网

高级检索

为了研究TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)钛合金的超塑性变形行为,采用两种改锻工艺细化坯料原始组织,然后在电子拉伸试验机上分别以恒速、恒应变速率和最大m值法进行拉伸实验.结果表明,TC11钛合金在α+β区通过三维镦拔改锻工艺,可以获得晶粒度为6μm的细晶等轴组织,而在β区拔长改锻的组织为粗大的魏氏组织.在变形温度为900℃的条件下,TC11钛合金通过最大m值超塑变形方式获得了异常高的超塑性,最大伸长率达到2300%;而采用常规的恒应变速率和恒速超塑变形,伸长率分别为1147%和1100%.说明TC11钛合金在α+β区通过三维镦拔改锻细化晶粒后,以最大m值超塑变形是获得较好超塑性的有效方法.

In order to investigate superplastic deformation behavior of TC11 titanium alloy, two forging processes were carried out to refine the original microstructure of the alloy, and then tensile tests were conducted on an electronic tensile tester by using maximum m value superplastic deformation(MaxmSPD) method and the conventional methods of the constant strain-rate and constant velocity superplastic deformation. The results show that a fine equiaxed microstructure of TC11 titanium alloy with grain size of about 6μm is obtained through three-dimensional upsetting and stretching in α+β region, however, a coarse Widmanstatten structure is observed in the alloy stretched in β region. At the deformation temperature of 900℃ , TC11 titanium alloy exhibits exceptionally high superplasticity with maximum m value superplastic deformation, and the greatest elongation reaches 2300% . However, with the conventional methods of the constant strain-rate and constant velocity superplastic deformation, the greatest elongation of TC11 alloy is 1147% and 1100% , respectively. It is suggested that MaxmSPD is an effective methed for obtaining the good superplasticity through three-dimensional upsetting and stretching to refine microstructure in α+β region of TC11 titanium alloy.

参考文献

[1] 曾立英,赵永庆,李丹柯,李倩.超塑性钛合金的研究进展[J].金属热处理,2005(05):28-33.
[2] Zhu X J;Tan M J;Zhou W .Enhanced superplasticity in commercially pure titanium alloy[J].Scripta Materialia,2005,52:651-6655.
[3] Somani MC.;Kaibyshev OA.;Ermatchenko AG.;Sundaresan R. .Deformation processing in superplasticity regime-production of aircraft engine compressor discs out of titanium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):134-139.
[4] 丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报,2004(07):1059-1067.
[5] 李文平.钛合金的应用现状及发展前景[J].轻金属,2002(05):53-55.
[6] Sergueeva AV.;Stolyarov VV.;Valiev RZ.;Mukherjee AK. .Superplastic behaviour of ultrafine-grained Ti-6A1-4V alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):318-325.
[7] Hirofumi Yoshimura;Jun Nakahigashi .Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protium treatment[J].International journal of hydrogen energy,2002(7/8):769-774.
[8] Yang K L;Huang J C;Wang Y N .Phase transformation in the (3 phase of super α_2 Ti3Al base alloys during static annealing and superplastic deformation at 700~1000℃[J].Acta Materialia,2003,51:2577-2594.
[9] Dunand D C;Myojin S .Biaxial deformation of Ti-6A1-4V and Ti-6Al-4V/TiC composites by transformation-mismatch superplasticity[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,230:25-32.
[10] Sergueeva A.V.;Stolyarov V.V. .ENHANCED SUPERPLASTICITY IN A Ti-6Al-4V ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION[J].Scripta materialia,2000(9):819-824.
[11] 赵文娟,丁桦,曹富荣,侯红亮,李志强.Ti-6Al-4V合金超塑性变形中的组织演变及变形机制[J].中国有色金属学报,2007(12):1973-1980.
[12] 张俊红,黄伯云,贺跃辉,孟力平.TiAl基合金低温超塑性变形的力学行为[J].中国有色金属学报,2003(02):442-447.
[13] 李才巨,顾家琳,刘庆.Ti-15-3钛合金超塑行为研究[J].材料科学与工艺,2007(03):319-324.
[14] 熊爱明,张志清,李淼泉.TC6钛合金的超塑性变形研究[J].航空学报,2003(05):477-480.
[15] 曾立英,赵永庆,李丹柯,李倩.低温超塑性钛合金的超塑性研究[J].航空材料学报,2006(05):6-9.
[16] GaoChao Wang;M. W. Fu .Maximum m superplasticity deformation for Ti-6Al-4V titanium alloy[J].Journal of Materials Processing Technology,2007(0):555-560.
[17] 赵晓宾,王高潮,范定兵.基于m值钛合金超塑性变形过程的计算机控制系统[J].南昌航空工业学院学报(自然科学版),2007(01):30-34.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%