欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究 TiCN 粉末表面镀 Co 时,镀液 pH 值对施镀过程的影响。方法采用低温化学镀工艺在 TiCN 粉末表面镀 Co。用氨水调节镀液的初始 pH 值,考查初始 pH 值对镀层形成速率的影响及 pH值在施镀过程中的变化情况。分析施镀前后,TiCN 表面相和形貌的变化。结果在碱性范围内,随着镀液初始 pH 值的增加,镀速呈先增大、后减小的趋势。镀液初始 pH 值为9时,镀速最高,且随着施镀的进行,镀液 pH 值明显降低,有大量气泡产生,大约0.5 h 后,pH 值趋于稳定。 TiCN 表面镀覆了较完整的 Co层。结论通过控制镀液的初始 pH 值,可以调整 TiCN 表面镀 Co 的效率。在85℃的温度下,镀液 pH为9时,能得到较高的镀覆效率。

Objective To study the effect of plating solution pH on the electroless plating process during the Co plating on the surface of TiCN powder. Methods Co was coated on the surface of TiCN powder by low-temperature electroless plating. The initial pH of the plating solution was adjusted by ammonium, and the effect of initial pH on the coating formation rate and the change of pH during the plating process were studied. Besides, the changes in phase composition and surface morphology of TiCN before and after plating were analyzed. Results Within the alkaline range, the plating rate first increased and then decreased with the increas-ing initial pH of the plating solution. The highest plating rate was observed when the initial pH of the plating solution was 9. During the plating process, the pH of the plating solution decreased obviously, with the production of a large amounts of bubbles. After 0. 5 h, the pH value became stable. A uniform Co coating formed on the surface of TiCN. Conclusion By adjustment the initial pH of the plating solution, the efficiency of Co plating on the surface of TiCN. High plating rate was observed at pH=9 and 85 ℃ .

参考文献

[1] ETTMAYER P .The Story of Cermets[J].Powder Metallur-gy International,1989,21(02):37-48.
[2] In-Jin Shon;Hyun-Su Kang;Song-Lee Du .Properties of Nanostructured TiCN and TiCN-TiAl Hard Materials Sintered by the High-Frequency Induction-Heating[J].Materials transactions,2013(10):2069-2074.
[3] Shan, L.;Wang, Y.;Li, J.;Li, H.;Wu, X.;Chen, J..Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater[J].Surface & Coatings Technology,2013:40-50.
[4] 柴立元;张传福;钟海云.金属包覆型复合粉末及其应用现状[J].材料导报,1996(03):77-80.
[5] 宋桂明,白厚善,杨跃平.ZnO压敏复合瓷粉的制备[J].有色金属,2000(04):83-86,99.
[6] Liu Zhu;Laima Luo;Juan Luo .Effect of electroless plating Ni-Cu-P layer on the wettability between cemented carbides and soldering tins[J].International Journal of Refractory Metals & Hard Materials,2012(Mar.):192-195.
[7] 陈月华,刘永永,江德凤,袁礼华.化学镀镍施镀过程稳定性分析[J].表面技术,2013(02):74-76.
[8] 宋秉政,赵亚萍,蔡再生.联氨-氨配合体系化学镀纯镍工艺[J].表面技术,2013(06):48-51.
[9] 吴珺仪,李忠盛,吴护林,李立.铝合金微弧氧化陶瓷膜表面复合化学镀Ni-P-SiC的研究[J].表面技术,2013(04):52-55.
[10] WILLIS P E;WELHAMA N J;KERRB A.Ambient Tempe-rature Formation of Alumina-Titanium Carbide-Metal Ce-ramic[J].European Ceramic Society,1998(18):701-708.
[11] Mondin, G.;Wisser, F.M.;Leifert, A.;Mohamed-Noriega, N.;Grothe, J.;D?rfler, S.;Kaskel, S..Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles[J].Journal of Colloid and Interface Science,2013:187-193.
[12] Yishi Tao;Anmin Hu;Tao Hang;Li Peng;Ming Li .Effect of W addition on the electroless deposited NiP(W) barrier layer[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013(Oct.1):632-637.
[13] C.S. Hsu;S.T. Chen;Y.S. Tang;G.S. Chen .Strengthening Electroless Co-based Barrier Layers By Minorrefractory-metal Doping[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(3):1274-1278.
[14] Lai-Ma Luo;Ze-Long Lu;Xiao-Yue Tan.A specific chemical activation pretreatment for electroless nickel plating on SiC ceramic powders[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2013:431-435.
[15] A. R. NIAZI,李树奎,王迎春,刘金旭,呼陟宇,Zahid USMAN.金刚石表面化学镀铜工艺的优化[J].中国有色金属学报(英文版),2014(01):136-145.
[16] 张桂敏;谭月华;张安富 等.ZrO2 陶瓷表面化学镀镍[J].武汉理工大学学报,2007,30(01):51-55.
[17] 肇研,张桐,张润,陈吉平,段跃新.空心陶瓷微球表面化学镀钴工艺及电磁性能研究[J].稀有金属材料与工程,2010(04):587-592.
[18] 杨建桥,刘宁,曾华平.陶瓷表面化学镀工艺研究[J].西北轻工业学院学报,2000(04):11-14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%