The adsorption of antimony atom on the Ag(110) surface has been studied within the density functional theory framework. It was turned out that Sb-Ag surface alloy was formed in which Sb atoms substitute Ag atom in the outermost layer and subsurface site absorption was not preferred, suggesting that Sb is well segregated to the surface. Geometric analysis showed that rumpling between substitutional Sb and Ag in the alloy surface is negligible. These results are found to agree well with the experimental finding of Nascimento et al. [Surf. Sci. 572 (2004) 337]. In addition, investigation of the diffusion of Ag atom on bare and Sb-covered Ag(110) surface showed that Ag adatoms will jump along the so call in-channel direction and Sb substitution has little effect on the diffusion of Ag adatoms on Ag(110) surface. Such diffusion behavior was found to be different from that of Ag adatoms on Ag(I 11) surface, where the diffusion energy barrier was reported to be significantly increased upon Sb substitution [Phys. Rev. Lett. 73 (1993) 2437]. (c) 2006 Elsevier B.V. All rights reserved.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%