欢迎登录材料期刊网

材料期刊网

高级检索

采用直流电沉积法,在低碳钢表面成功沉积Ni-W-P镀层.应用X射线荧光(XRF)、扫描电子显微镜(SEM)、俄歇电子能谱(AES)、X射线衍射(XRD)仪等方法,研究电流密度、镀液pH值和镀液温度对Ni-W-P镀层成分、表面形貌和结构的影响.结果表明,电流密度和镀液pH值的变化对Ni-W-P镀层成分的影响很大,而电流密度、镀液pH值和温度对镀层厚度的影响较小.电流效率随着电流密度和镀液温度的增大分别降低和升高,而随着镀液pH值的变化,在pH=7.0时有极大值.镀液pH值对Ni-W-P镀层结构有较大影响,在pH=8.0时,镀层呈现明显的Ni(111)峰,此时镀层硬度达到极大值7130 MPa.在此基础上,对Ni-W-P镀层的电沉积机制做了进一步探讨.

Ni-W-P layers were formed on a low-carbon steel substrate by direct-current electroplating method. The effects of current density, pH value and bath temperature on the composition, surface morphology, and microstructure of Ni-W-P layers were studied by X-ray fluorescence (XRF), scanning electron microscope (SEM), auger electron spectroscopy (AES) and X-ray diffraction (XRD). The results indicate that the change of current density and pH value influenced the composition of Ni-W-P layer greatly, but the change of current density, pH value and bath temperature hardly influenced the thickness of Ni-W-P layer. As current density and bath temperature increased, current efficiency decreased and increased, respectively, and current efficiency reached the maximum value when pH value is 7.0. The structure of Ni-W-P layer was greatly influenced by pH value, and a well-preferred orientation along Ni (111) direction was shown when pH value was 8.0. Synchronously, the microhardness of Ni-W-P layer reached the maximum value of 7130 MPa. At last, electroplating mechanism of Ni-W-P layer was discussed further.

参考文献

[1] Pearlstein F et al.[J].The Electrochemical Society,1963,110(07):843.
[2] Zhang W X et al.[J].Applied Surface Science,2007,253:5116.
[3] Balaraju J N et al.[J].Electrochimica Acta,2006,52:1064.
[4] Aly I H M.[J].Metal Fishing,2003(04):37.
[5] Zhang Bangwei et al.[J].Materials Characterization,1996,37:119.
[6] Hu Yongjun et al.[J].Surface and Coatings Technology,2006,201:988.
[7] Balaraju JN;Jahan SM;Rajam KS .Studies on autocatalytic deposition of ternary Ni-W-P alloys using nickel sulphamate bath[J].Surface & Coatings Technology,2006(3/4):507-512.
[8] Balaraju JN;Jahan SM;Anandan C;Rajam KS .Studies on electroless Ni-W-P and Ni-W-Cu-P alloy coatings using chloride-based bath[J].Surface & Coatings Technology,2006(16/17):4885-4890.
[9] Yiying Tsai.[J].Surface & Coatings Technology,2001(146-147):502.
[10] 牛立斌.Ni-W-P合金在铁上电沉积时阴极极化的研究[J].电镀与精饰,2006(03):41-43.
[11] 李洁琼 et al.[J].Journal of Henan University of Science and Technology(Natural Science)(河南科技大学学报(自然科学版,2003,24(04):8.
[12] 贾淑果 et al.[J].表面技术,1999,28(01):6.
[13] Eliaz N.[J].Electrochimica Acta,2005(50):2893.
[14] Ohru Watanabe;陈祝平;杨光.纳米电镀[M].北京:化学工业出版社,2007:5.
[15] Paunovic M.Fundamentals of Electrochemical Deposi-tion[M].New York:Wiley,1998
[16] Budevski E.Electrochemical Phase Formation and Growth[M].New York:VCH Publishers,1996
[17] 牛立斌 .Ni-W-P镀层合金的电化学沉积研究[D].Xi'an:Xi'an University of Architecture and Technology,2006.
[18] 李振良,杨防祖,姚士冰,周绍民.镍钨合金电结晶机理[J].厦门大学学报(自然科学版),1999(02):230-234.
[19] 黄令,董浚修,杨防祖,许书楷,周绍民.镍钨合金电沉积伏安特性和初期行为的研究[J].电镀与涂饰,1999(01):1-3.
[20] 黄令.Ni-Mo合金电沉积层织构及形成机理[J].电化学,1997(02):174.
[21] 杨防祖,牛振江,曹刚敏,许书楷,周绍民.镍钨磷合金电结晶机理及其镀层结构与显微硬度[J].物理化学学报,2000(11):1022-1027.
[22] Fletcher et al.[J].Electrochimica Acta,1983,28(07):917.
[23] Eliaz N.[J].Electrochimica Acta,2005(50):2893.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%