为避免芳香族聚氨酯在体内降解时产生有毒物质,选用生物相容性良好的脂肪族聚氨酯(PU)与生物活性的羟基磷灰石(HA)为原料,通过原位聚合法制备了脂肪族PU/HA组织工程用多孔支架,并采用SEM、IR和力学试验等方法对多孔支架的形貌和性能进行了表征,进一步研究了发泡剂(水)用量和HA含量对支架泡孔结构和力学强度的影响.结果表明,当发泡剂用量为1%~1.5%(质量分数)时制得的多孔PU/HA复合支架材料孔隙之间相互贯通,孔径范围分布在300~800μm,大孔壁上分布着孔径为50~200μm的小孔,孔隙率达80%以上.随HA含量增加,支架抗压强度和弹性模量显著上升.综合考虑HA的增强效果和组织工程支架的孔隙结构,本体系中HA的最佳添加量为40%(质量分数),发泡剂的最佳用量为1%(质量分数).
In order to avoid toxic degradation products of aromatic polyurethanes in vivo,aliphatic polyurethanes with good biocompatibility and bioactive hydroxyapatite were selected to fabricate porous PU/HA scaffolds for tissue engineering by in situ polymerization.The morphology and properties of the scaffolds were characterized by SEM,IR,and mechanical testing.The effects of the amount of blowing agent(water) and HA content on the pore structure and mechanical strength of scaffolds were investigated.The results indicate that when adding 1wt%-1.5wt% blowing agent into PU,the scaffolds possess interconnected porous structure with a pore size mainly ranging from 300 to 800μm,and 50-200μm micropores existed on the pores' walls,the porosity of the scaffolds is more than 80%.The compressive strength and modulus of the composite scaffolds show higher enhancement with increasing HA content.Considering comprehensively the reinforcing effect of the HA filler and the open porous structure for tissue engineering scaffold,in this system,the optimal addition of HA particles in polyurethane can be 40wt% and the optimal amount of blowing agent can be 1wt%.
参考文献
[1] | Lamba N M K;Woodhouse K A;Cooper S L.Polyurethanes in Biomedical Applications[M].New York:crc Press,1998 |
[2] | Kavlock K;Pechar T;Hollinger J et al.[J].ACTA BIOMATERIALIA,2007,3(04):475-484. |
[3] | 李保强,胡巧玲,方征平,许承威.组织工程用聚氨酯的研究进展[J].高分子通报,2003(02):1-7. |
[4] | Guan J J;Sacks M S;Beckman E J et al.[J].Journal of Biomedical Materials Research,2002,61(03):493-503. |
[5] | Guan JJ;Fujimoto KL;Sacks MS;Wagner WR .Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J].Biomaterials,2005(18):3961-3971. |
[6] | Gorna K;Gogolewski S .[J].Journal of Biomedical Materials Research Part A,2003,67(03):813. |
[7] | Shackelford J F .[J].Materials Science Forum,1999,293:99-106. |
[8] | Cerroni L;Filocamo R;Fabbri M et al.[J].Biomolecular Engineering,2002,19(2-6):119-124. |
[9] | Li J D;Zuo Y;Cheng X M et al.[J].Materials Research Innovations,2008,12(02):98-101. |
[10] | Li Y;Klein CPAT;Meer S et al.[J].Journal of Materials Science:Materials in Medicine,1994,5:252-255. |
[11] | Pascalis E P;Betts F;DiCarlo E et al.[J].Calcified Tissue International,1997,61(06):480-486. |
[12] | Rey C;Collins B;Goehl T et al.[J].Calcified Tissue International,1989,45:157-164. |
[13] | Yilgor E.;Yilgor I.;Yurtsever E. .Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds[J].Polymer: The International Journal for the Science and Technology of Polymers,2002(24):6551-6559. |
[14] | Wilhelm C.;Gardette JL. .INFRARED ANALYSIS OF THE PHOTOCHEMICAL BEHAVIOUR OF SEGMENTED POLYURETHANES .1. ALIPHATIC POLY(ESTER-URETHANE)[J].Polymer: The International Journal for the Science and Technology of Polymers,1997(16):4019-4031. |
[15] | Khan AS;Ahmed Z;Edirisinghe MJ .Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane-nanohydroxyapatite fibres.[J].Acta biomaterialia,2008(5):1275-1287. |
[16] | Luo N.;Ying SK.;Wang DN. .HYDROGEN-BONDING PROPERTIES OF SEGMENTED POLYETHER POLY(URETHANE UREA) COPOLYMER[J].Macromolecules,1997(15):4405-4409. |
[17] | 董志红,李玉宝,张利,左奕.软骨修复用HA/PU多孔支架材料的制备与表征[J].无机材料学报,2007(06):1255-1258. |
[18] | 李珍,李正浩.微乳液法合成多孔纳米碳酸钙实验研究[J].中国粉体技术,2002(06):34-36. |
[19] | 徐翔民,张予东,李宾杰,卢会敏,张治军.纳米SiO2/尼龙66复合材料的力学性能和热性能[J].复合材料学报,2008(04):56-61. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%