欢迎登录材料期刊网

材料期刊网

高级检索

镁合金以质轻、结构性能优异、以及易于回收等众多优点成为装备制造业轻量化发展的首选材料;而且,无论在储量、特性、应用范围、循环利用、以及节能环保等方面和钢铁相比,均具有非常明显的优势.首先介绍了镁合金在近代工业发展中的作用以及现实应用存在的主要问题,然后对镁合金的腐蚀机理、各种因素对镁合金腐蚀性能的影响以及新型稀土镁合金的电化学腐蚀行为进行了综述.最后简要介绍了几种比较有发展前景的镁合金表面防护技术,并概述了镁合金腐蚀与防护研究未来的发展方向.

参考文献

[1] 张丁非;彭建;丁培道 et al.镁合金资源、应用及其发展现状[J].材料导报,2008,18(04):72-77.
[2] 戴长松;吴宜勇;王殿龙 et al.镁及镁合金的化学镀镍[J].兵器材料科学与工程,1997,20(04):35-38.
[3] Birks N;MeierG H;赵公台;赵克清.高温氧化导论[M].北京:冶金工业出版社,1989
[4] 霍宏伟,李瑛,王赫男,王福会.镁合金的腐蚀与防护[J].材料导报,2001(07):25-27.
[5] 杨琴,蒋斌.镁合金的腐蚀与防护研究进展[J].材料导报,2007(z2):317-319.
[6] Mordike B L;Ebert T .Magnesium:Properties-Applications-Potential[J].Materials Science and Engineering,2001,A302:37-45.
[7] 李瑛,宋光铃,林海潮,曹楚南.金属镁在腐蚀介质中界面结构特征与负差数效应关系研究[J].腐蚀科学与防护技术,1999(04):202-208.
[8] 吴振宁,李培杰,刘树勋,曾大本.镁合金腐蚀问题研究现状[J].铸造,2001(10):583-586.
[9] Alves H;Koster U;Aghion E .Environmental Behaviour of Magnesium and Magnesium Alloy[J].Materials Technology,2001,16(02):110-126.
[10] Genevieve Baril;Nadine Pebere .The Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions[J].Corrosion Science,2001,43:471-484.
[11] 贾瑞灵 .氯化钠污染条件下镁-铝合金的β相对其大气腐蚀行为的作用机制[D].哈尔滨工程大学,2008.
[12] Tao Zhang;Chongmu Chen;Yawei Shao;Guozhe Meng;Fuhui Wang;Xiaogang Li;Chaofang Dong .Corrosion of pure magnesium under thin electrolyte layers[J].Electrochimica Acta,2008(27):7921-7931.
[13] Hanawalt J D;Nelson C E;Peloubet J A .Corrosion Studies of Magnesium and Its Alloys[J].Trans Am Ins Mining Met Eng,1942,147:273-299.
[14] 朱祖芳.有色金属的耐腐蚀性能及其应用[M].北京:化学工业出版社,1995:61-74.
[15] Tao Zhang;Ying Li;Fuhui Wang .Roles of β phase in the corrosion process of AZ91D magnesium alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(5):1249-1264.
[16] Gebert A;Wolff U;John A et al.Corrosion Behavior of Mg65Y10Cu25 Metallic Galss[J].Sripta Meterialia,2000,43:279-283.
[17] Gebert A .Stability of the Bulk Galss-Forming Mg65Y10Cu25 Alloy in Aqueous Electrolytes[J].Materials Science and Engineering,2001,A299:125-135.
[18] Li Ying;Zhang Tao;Wang Fuhui .Effect of Microcrystallization on the Corrosion Behavior of AZ91D Magnesium Alloy[J].Electrochimica Acta,2006,51:2845-2850.
[19] X. W. Guo;J. W. Chang;S. M. He .Application of Electrochemical Techniques to Characterization of the Corrosion Behaviors of GW63 Alloys[J].Materials Science Forum,2007(Pt.1):571-574.
[20] Chang Jianwei;Fu Penghuai;Guo Xingwu et al.The Effects of Heat Treatment and Zirconium on the Corrosion Behaviour of Mg-3Nd-0.2Zn-0.4Zr(w/%)Alloy[J].Corrosion Science,2007,49:2612-2627.
[21] Chang Jianwei;Fu Penghuai;Guo Xingwu et al.Effect of Heat Treatment on Corrosion and Electrochemical Behaviours of Mg-3Nd-0.2Zn(w/%)Magnesium Alloy[J].Materials Science Forum,2007,546-549:559-562.
[22] CHANG Jian-wei,GUO Xing-wu,FU Peng-huai,PENG Li-ming,DING Wen-jiang.Relationship between heat treatment and corrosion behaviour of Mg-3.0%Nd-0.4%Zr magnesium alloy[J].中国有色金属学会会刊(英文版),2007(06):1152-1157.
[23] Chang Jianwei;Guo Xingwu;He Shangming et al.Investigation of the Corrosion for Mg-xGd-3Y-0.4Zr(x =6,8,10,12,w/%)Alloys in a Peak Aged Condition[J].Corrosion Science,2008,50:166-177.
[24] Xing-Wu Guo;Jian-Wei Chang;Shang-Ming He;Wen-Jiang Ding;Xishu Wang .Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4Zr alloy in NaCl aqueous solutions[J].Electrochimica Acta,2007(7):2570-2579.
[25] Chang Jianwei;Guo Xingwu;Fu Penghuai et al.Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of Mg-3Nd-0.2Zn-0.4Zr(w/%)Alloy[J].Electrochimica Acta,2007,52:3160-3167.
[26] Fumihiro S;Yoshihiko A;Takenori N .Corrosion Behavior of Magnesium Alloys with Different Surface Treatment[J].Japanese Journal of Institute of Light Metals,1992,42(12):752-758.
[27] 李耀 .镁合金表面有机涂层和化学镀层研究[D].长春:吉林大学,2007.
[28] A. K. Sharma;M. R. Suresh;H. Bhojraj;H. Narayanamurthy;R. P. Sahu .Electroless nickel plating on magnesium alloy[J].Metal finishing,1998(3):10-25.
[29] 霍宏伟,李瑛,王福会.AZ91D镁合金化学镀镍[J].中国腐蚀与防护学报,2002(01):14-17.
[30] Ambat R.;Zhou W. .Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters[J].Surface & Coatings Technology,2004(2/3):124-134.
[31] Electrodeposition Of Al-mn Alloy On Az31b Magnesium Alloy In Molten Salts[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(9):4926-4932.
[32] Jifu Zhang;Wei Zhang;Chuanwei Yan;Keqin Du;Fuhui Wang .Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)[J].Electrochimica Acta,2009(2):560-571.
[33] Gnedenkov S V;Gordienko P S;Sinnebryukhov S L et al.Antiscuff Coatings Obtained by Micro-Arc Oxidation Titanium Alloy[J].Russian Journal of Applied Chemistry,2000,73(01):6-9.
[34] Nie X;Leyland A;Song H W.Thickness Effects on the Mechanical Properties of Micro-Arc Discharge Oxide Coatings on Aluminiumalloy[J].Surface and Coatings Technology,1999(116-119):1055-1060.
[35] Zhang YJ;Yan CW .Development of anodic film on Mg alloy AZ91D[J].Surface & Coatings Technology,2006(6):2381-2386.
[36] 张伟 .基于PEO的生物功能性和防护性涂层的制备与性能研究[D].中国科学院金属研究所,2008.
[37] Hongping Duan;Keqin Du;Chuanwei Yan;Fuhui Wang .Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J].Electrochimica Acta,2006(14):2898-2908.
[38] Hongping Duan;Chuanwei Yan;Fuhui Wang .Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J].Electrochimica Acta,2007(11):3785-3793.
[39] Duan H P;Yan C W;Wang F H .Growth Process of Plasma Electrolytic Oxidation Films on Magnesium Alloy AZ91D in Silicate Solution[J].Electrochimica Acta,2007,52:5002-5009.
[40] 曾立云 .AZ91D镁合金微弧氧化及其化学镀镍的研究[D].哈尔滨工程大学,2007.
[41] Shuo Sun;Jianguo Liu;Chuanwei Yan;Fuhui Wang .A Novel Process For Electroless Nickel Plating On Anodized Magnesium Alloy[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2008(16):5016-5022.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%