欢迎登录材料期刊网

材料期刊网

高级检索

研究了钢板一纤维增强复合材料板一钢板构成的三明治结构对破片的防护性能。通过破片模拟弹丸(FSP)高速撞击不同结构三明治板实验,获得FSP弹丸贯穿16种三明治板的弹道极限,分析结构特征对纤维增强复合材料三明治板比吸收能的影响。结果表明,叠层芳纶、玻纤基三明治板较单层结构三明治板比吸收能分别提高了8.31%和16.09%,8mm面板+8mm夹层+6mm背板芳纶、玻纤基三明治板较4mm面板+8mm夹层+10mm背板的芳纶、玻纤基三明治板比吸收能分别提高了37.72%和25.35%;芳纶、玻纤基三明治板的比吸收能均随复合材料夹层厚度的增加呈指数递增,夹层基板的抗拉性能是影响三明治板比吸收能的重要因素;同面密度下,厚面板、薄背板及多层叠合夹层结构的三明治板具有更高的比吸收能。

The defense performance of sandwich structure of steel plate - fiber composite material plate - steel plate structure against fragment was investigated. By the experiment on the fragment simulation projectile (FSP), impacted to different kinds of sandwich plate with high velocity, the ballistic limits of fragment pierced 16 kinds of sandwich plates were obtained, and the influence of structure characteristic on the speeifie energy absorption of the sandwich plate was analyzed. The results show that the specific energy absorption of laminated sandwich structure on aramid and glass fiber is 8. 31% and 16.09% higher than that of a single-layer structure, respectively. The specific energy absorption of the sandwich structure with 8 mm front+ 8mm core+ 6 mm back on aramid and glass fiber is 37.72% and 25. 35% higher than the one with 4 mm frontq-8 mm core+10 mm back, respectively. The speeific energy absorption of sandwich plate exponentially increases with the thickness of fiber composite sandwich. The tensile properties of middle layer plate is an important factor on the specific energy absorption of the sandwich plate. At the same areal density, the specific energy absorption of the sandwich plate can be significantly improved by adopting thicker faceplate, thinner backboard and laminated structure for middle layer.

参考文献

[1] 李顺林,王兴业.复合材料结构设计基础[M].武汉:武汉工业大学出版社,1993.
[2] 倪长也,金峰,卢天健,等.3种点阵金属三明治板的抗侵彻性能模拟分析[J].力学学报,20lO,42(6):1125-1136
[3] 倪长也,金峰,卢天健.超轻金属点阵三明治板结构抗侵彻性能分析[J].兵工学报,2009,30(S2):94-96.
[4] Phoenix S L, Porwal P K. A new membrane model for the ballistic impact response and V50 performance of multi- ply fibrous systems [J]. International Journal of Solids and Structures, 2003, 40: 6723-6765.
[5] Fatt M S H, Sirivoiu D. A wave propagation model for the high velocity impact response of a composite sandwich panel [J]. International Journal of Impact Engineering, 2010, 37: 117-120.
[6] Dean J, Fallah A S, Brown P M, et al. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores [J]. Composite Structures, 2011, 93: 1089-1095.
[7] 赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报,2008,40(2):194-206.
[8] 石少卿,刘仁辉,汪敏.钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J].振动与冲击,2008,27(4):143-146.
[9] 王晓强,朱锡,梅志远.纤维增强复合材料抗侵彻研究综述[J].玻璃钢/复合材料,2008(5):47-55
[10] Shen J H, Lu G X, Wang Z H, et al. Experiments on curved sandwich panels under blast loading [J]. International Journal of Impact Engineering, 2010, 37: 960-970.
[11] GustinJ, Joneson A, Mahinfalah M, et al. Low velocity impact of combination Kevlar/carbon fiber sandwich composites [J]. Composite Structures, 2005, 69: 396-406.
[12] 董永香,冯顺山,李学林.爆炸波在硬-软-硬三明治介质中传播特性的数值分析[J].弹道学报,2007,19(1):59-63.
[13] Jackson M, Shukla A. Performance of sandwich composites subjected to sequential impact and air blast loading [J]. Composites: Part B, 2011, 42: 155-166.
[14] Mahfuz H, Zhang Y H, Haque A, et al. Investigation of high velocity impact on integral armor using finite element method [J]. International Journal of Impact Engineering, 2000, 24: 203-217.
[15] Wambua P T, Vangrimde B, Lomov S, et al. The response of natural fibre composites to ballistic impact by fragment simulating projectiles[J].Composite Structures, 2007, 77: 232-240.
[16] Zukas J R. High velocity impact dynamics [M]. USA: John Wiley & Sons Inc, 1990.
[17] 虢忠仁,杜文泽,钟蔚华,等.芳纶复合材料对球形弹丸的抗贯穿性能研究[J].兵工学报,20i0,31(4):458-463
[18] 梅志远,朱锡,刘燕红,等.纤维增强复合材料层合板弹道冲击研究进展[J].力学进展,2003,33(3):375-389.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%