根据小形变时的简单梁理论,给出了由碳纳米管悬空部分粘附时的几何形貌来计算平行碳纳米管之间粘附力的理论模型,推导了平行碳纳米管之间粘附力的计算公式以及碳纳米管粘附到沟槽基底时与沟槽基底的粘附力计算公式.由于碳纳米管本身的尺度小,实验上无法直接测量出平行碳纳米管之间的粘附力.本研究给出的计算公式可以由扫描电子显微镜(SEM)下观测到的碳纳米管悬空部分粘附时的几何形貌计算出平行碳纳米管之间的粘附力.根据文献中给出的平行碳纳米管之间粘附力的理论计算结果,估算了不同间距的平行碳纳米管能够粘附在一起所需要的槽口宽度,以及碳纳米管恰好粘附到沟槽基底时不同槽口宽度和深度之间的对应关系.这些结果对制备用于测量平行碳纳米管之间粘附力的悬空结构提供了重要的参考价值.
参考文献
[1] | Dresselhaus M S;Dresselhaus G;Avouris P H.Carbon nanotubes synthesis,structures,and applications[M].Beilin:Springer-Verlag,2001 |
[2] | McEuen P L;Fuhrer M S;Park H .Single-walled carbon nanotube electronics[J].Nanotechnology,2002,1(01):78. |
[3] | Bachtold A;Hadley P;Nakanishi T et al.Logic gates and computation from assembled nanowire building blocks[J].Science,2001,294(09):1313. |
[4] | Martel R.;Shea HR.;Hertel T.;Avouris P.;Schmidt T. .Single- and multi-wall carbon nanotube field-effect transistors[J].Applied physics letters,1998(17):2447-2449. |
[5] | Bachilo S;Strano M et al.Structure-assigned optical spectra of single-walled carbon nanotubes[J].Science,2002,298(5602):2361. |
[6] | Treacy M M J;Ebbesen T W;Gibson J M .Exceptionally high Young's modulus observed for individual carbon nanotubes[J].Nature,1996,381(6584):678. |
[7] | Krishnan A.;Ebbesen TW.;Yianilos PN.;Treacy MMJ.;Dujardin E. .Young's modulus of single-walled nanotubes[J].Physical Review.B.Condensed Matter,1998(20):14013-14019. |
[8] | Wong EW. Sheehan PE. Lieber CM. .NANOBEAM MECHANICS - ELASTICITY, STRENGTH, AND TOUGHNESS OF NANORODS AND NANOTUBES[J].Science,1997(5334):1971-1975. |
[9] | Gyu-Tae Kim;Gang Gu;Ulrike Waizmann;Siegmar Roth .Simple method to prepare individual suspended nanofibers[J].Applied physics letters,2002(10):1815-1817. |
[10] | D. A Walters;L. M. Ericson;M. J. Cassavant;J. Liu;D. T. Colbert;K. A. Smith;R. E. Smalley .Elastic strain of freely suspended single-wall carbon nanotube ropes[J].Applied physics letters,1999(25):3803-3805. |
[11] | Castello G A .Analytical investigation of wire rope[J].Applied Mechanics Reviews,1978,31(04):897. |
[12] | Costello G A.Theory of wire rope[M].New York:springer-verlag,1997 |
[13] | Binding energy of parallel carbon nanotubes[J].Applied physics letters,2003(17):3570-3571. |
[14] | Tang T;Jagota A;Hui CY .Adhesion between single-walled carbon nanotubes[J].Journal of Applied Physics,2005(7):4304-1-4304-6-0. |
[15] | Wu DM.;Fang N.;Sun C.;Zhang X. .Adhesion force of polymeric three-dimensional microstructures fabricated by microstereolithography[J].Applied physics letters,2002(21):3963-3965. |
[16] | Wu DM;Fang N;Sun C;Zhang X .Stiction problems in releasing of 3D microstructures and its solution[J].Sensors and Actuators, A. Physical,2006(1):109-115. |
[17] | Sun, M.-Z.;Li, Y.;Cui, H.-B.;Yang, H.;Gong, Q.-H. .Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization[J].Applied physics, A. Materials science & processing,2010(1):177-180. |
[18] | Mastrangelo C.H.;Hsu C.H. .Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory[J].Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems,1993(1):33-43. |
[19] | Mastrangelo C.H.;Hsu C.H. .Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments[J].Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems,1993(1):44-55. |
[20] | Yu MF.;Arepalli S.;Ruoff RS.;Files BS. .Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J].Physical review letters,2000(24):5552-5555. |
[21] | Akita S.;Nakayama Y.;Nishijima H. .Influence of stiffness of carbon-nanotube probes in atomic force microscopy[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2000(21):2673-2677. |
[22] | Liangti Qu;Liming Dai;Morley Stone;Zhenhai Xia;Zhong Lin Wang .Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off[J].Science,2008(5899):238-242. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%