欢迎登录材料期刊网

材料期刊网

高级检索

近年来发展起来的PFM模型根据"溶质捕捉"和"溶质牵引"两种机制对金属及合金快速凝固过程进行数学描述及模拟, 较好地反映了金属凝固的物理本质. 介绍了PFM模型发展过程、研究现状及理论模型, 并对发展前景进行了展望.

参考文献

[1] 周尧和;胡壮麒.凝固技术[M].北京:机械工业出版社,1998:10.
[2] Fife P C.Models for phase separation and their mathematics[J].Electronic Journal of Differential Equations,2000(48):1-26.
[3] Caginalp G;Xie W .Phase-field and sharp-interface alloy models[J].Physical Review E,1993,48:1897-1909.
[4] Caginalp G .Phase field models and sharp interface limits: some differences in subtle situations[J].Rocky Mountain Journal of Mathematics,1991,21(02):603-616.
[5] Fabbri M;Voller V R .The phase-field in the sharpinterface limit: a comparison between model parameters[J].Journal of Computational Physics,1997,130:256.
[6] Kessler D A;Koplik J;Levine H .Pattern selection in fingered growth phenomena[J].Advances in Physics,1988,37:255-339.
[7] Langer J S .Instabilities and pattern formation in crystal growth[J].Reviews of Modern Physics,1980,52:1-28.
[8] Taylor J E;Cahn J W .Link anisotropic sharp and diffuse surface motion laws via gradient flows[J].Journal of Statistical Physics,1992,77:183-197.
[9] Vladimrova N;Malagoli A;Mauri R .Diffusion driven phase separation of deeply quenched mixtures[J].Physical Review E,1998,58(06):7691-7699.
[10] Charach C;Zaltzman B .Interfacial kinetics effect in planar solidification problems without initial undercooling[J].Mathematical Methods in the Applied Sciences,1994,4:331-354.
[11] Collet P .Thermodynamic limit of the ginzburg-landau equation[J].Nonlinearity,1994,7:1175-1190.
[12] Levermore C D;Oliver M .The complex Ginzburg-Landau equation as a model problem[J].Lectures in Applied Mathematics,1996,31:141-189.
[13] Wheeler A A;Bottinger W J;McFadden G B .Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A,1992,45(10):7424-7439.
[14] Wheeler A A;McFadden G B;Bottinger W J .Phase-field model for solidification of a eutectic alloy[J].Proceedings of the Royal Society of London,1996,A452:495-525.
[15] Bates P;Fife P .Spectral comparison principles for the Cahn-Hilliard and phase field equations,and time scales for coarsening[J].Physica D-Nonlinear Phenomena,1990,43:335-348.
[16] Warren J A;Boettinger W J;Caginalp G .A phase-field model of dendritic growth in a binary alloy[J].Acta Metallurgica et Materialia,1995,A43:689-698.
[17] Steinbach I.;Nestler B.;Seesselberg M.;Prieler R.;Schmitz GJ.;Rezende JLL.;Pezzolla F. .A PHASE FIELD CONCEPT FOR MULTIPHASE SYSTEMS[J].Physica, D. Nonlinear phenomena,1996(3):135-147.
[18] Conti M. .Thermal and chemical diffusion in the rapid solidification of binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2000(1):642-650.
[19] Conti M. .Interface dynamics, instabilities, and solute bands in rapid directional solidification[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1998(2 Pt.b):2071-2078.
[20] Losert W;Stillman D A;Cummins H Z et al.Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations[J].Physical Review E,1998,58(06):7492-7506.
[21] Ahmad NA.;Boettinger WJ.;McFadden GB.;Wheeler AA. .Solute trapping and solute drag in a phase-field model of rapid solidification[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1998(3 Pt.b):3436-3450.
[22] Kim SG.;Suzuki T.;Kim WT. .Phase-field model for binary alloys[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1999(6 Pt.b):7186-7197.
[23] Conti M .Planar isothermal solidification from an undercooled melt: unsteady solute segregation studied with the phase-field model[J].Physical Review E,1997,55:701-707.
[24] Caginalp G .An analysis of a phase field model of a free boundary[J].Archive For Rational Mechanics and Analysis,1986,92:205-245.
[25] Caginalp G .Stefan and Hele-Shaw type models as asymptotic limits of phase field equations[J].Physical Review A,1989,39:887-896.
[26] Caginalp G;Chen X .Convergence of the phase field model to its sharp interface limits[J].European Journal of Applied Mathematics,1998,9:417-445.
[27] Caginalp G;Jones J .A derivation and analysis of phase field models of thermal alloys[J].Annals of Physics,1995,237:66-107.
[28] Caginalp G;Fife P C .Phase-field methods for interfacial boundaries[J].Physical Review B,1986,33(11):7792-7795.
[29] Wang S L;Sekerka R F;Wheeler A A et al.Thermodynamically-consistent phase-field models for solidification[J].Physica D-Nonlinear Phenomena,1993,69:189-200.
[30] Fried E;Gutin M E .Continuum theory of thermally induced phase transitions based on an order parameter[J].Physica D-Nonlinear Phenomena,1993,68:326-343.
[31] Conti M .Solute trapping in directional solidification at high speed: a 1-D study with a phase-field model[J].Physical Review E,1997,56:3717-3720.
[32] Charach C;Keizman Y .Solute trapping effects in planar isothermal solidification of dilute binary alloys[J].PHYSICAL REVIEW E,1997,54:588-599.
[33] Weeler A A;Bottinger W J;Mcfadden .Phase-field model of solute trapping during solidification[J].Physical Review E,1993,47(03):1893-1909.
[34] Kaplan T;Aziz M J;Gray L J .Application of Onsager's reciprocity relations to interface motion during phase transformations[J].Journal of Chemical Physics,1989,90:1133-1140.
[35] Aziz M J;Bottinger W J .On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J].Acta Metallurgica Et Materialia,1994,42(02):527-537.
[36] Collins J B;Levine H .Diffuse interface model of diffusion-limited crystal growth[J].Physical Review B,1985,31:6119-6122.
[37] Bechhoefer J;Lowen H;Tuckerman L S .Dynamical mechanism for the formation of metastable phases[J].Physical Review Letters,1991,67:1266-1269.
[38] Ryo Kobayshi .Modeling and numerical simulation of dendritic crystal growth[J].Physica D-Nonlinear Phenomena,1993,63:410-423.
[39] Wang S L;Sekerka R F .Computation of the dendritic operating state at large supercoolings by the phase field model[J].Physical Review E,1996,53(04):3760-3776.
[40] Karma A;Rappel W J .Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J].Physical Review E,1996,53:3017.
[41] Wang S L;Sekerka R F .Algorithms for phase field computation of the dentritic operating state at large supercoolings[J].Journal of Computational Physics,1996,127:110-117.
[42] Wheeler A A;Murray B T;Schaefer R J .Computation of dendrites using a phase field model[J].Physica D-Nonlinear Phenomena,1993,66:243-262.
[43] Karma A .Phase-field model of eutectic growth[J].Physical Review E,1994,49(03):2245-2250.
[44] Elder K R;Drolet F;Kosterlitz J M et al.Directional solidification in two and three dimensions[J].Physical Review Letters,1994,72:677.
[45] K. R. Elder;J. D. Gunton;Martin Grant .Nonisothermal eutectic crystallization[J].Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics,1996(6):6476-6484.
[46] Drolet F.;Grant M.;Kosterlitz JM.;Elder KR. .Phase-field modeling of eutectic growth[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2000(6 Pt.b):6705-6720.
[47] Mcffadden G B;Wheeler A A;Braun R J et al.Phase-field models for anistropic interface[J].Physical Review E,1993,48(03):2016-2024.
[48] Beckermann C;Diepers H J;Steinbach I et al.Modeling melt convection in phase-field simulations of solidification[J].Journal of Computational Physics,1999,154:468-496.
[49] H.-J. DIEPERS;C. BECKERMANN;I. STEINBACH .SIMULATION OF CONVECTION AND RIPENING IN A BINARY ALLOY MUSH USING THE PHASE-FIELD METHOD[J].Acta materialia,1999(13):3663-3678.
[50] Tong X;Beckermann C;Karma A .Velocity and shape selections of dendritic crystals in a forced flow[J].Physical Review E,2000,61:R49-R52.
[51] Voller V R;Beckermann C .Approximate models of microsegregation with coarsening[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1999,30:3016-3019.
[52] Conti M .Solidification of binary alloys: thermal effects studied with the phase-field model[J].Physical Review E,1997,55:765-771.
[53] Bates P W;Fife P C .Dynamics of nucleation for the Cahn-Hilliard equation[J].SIAM Journal of Applied Mathematics,1993,53:990-1008.
[54] Langer J S .Theory of spinodal decomposition in alloys[J].Annals of Physics,1971,65:53-86.
[55] Cahn J W .Phase separation by spinodal decomposition in isotropic systems[J].Journal of Chemical Physics,1965,42:93-99.
[56] Koga T;Kawasaki K .Spinodal decomposition in binary fluids: Effects of hydrodynamic interactions[J].Physical Review A,1991,44:R817.
[57] Grant C P .Spinodal decomposition for the Cahn-Hilliard equation[J].Communications in Partial Differential Equations,1993,18:453-490.
[58] Eyre D J .Systems of Cahn-Hilliard equations[J].SIAM Journal of Applied Mathematics,1993,53:1686-1712.
[59] Pego R L .Front migration in the nonlinear Cahn-Hilliard equation[J].Proceedings of the Royal Society of London,1989,A422:261-278.
[60] Brush L N;Sekerka R F .A numerical study of two-dimensional growth forms in the presence of anisotropic growth kinetics[J].Journal of Crystal Growth,1989,96:419-441.
[61] Norio Akaiwa;D. I. Meiron .Two-dimensional late-stage coarsening for nucleation and growth at high-area fractions[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,1996(1):R13-R16.
[62] Meakin P .Formation of fractal clusters and networks by irreversible diffusion-limited aggregation[J].Physical Review Letters,1983,51:1119-1124.
[63] AlSunaidi A.;Gonzalez AE.;Blaisten-Barojas E.;Lach-hab M. .Cluster-cluster aggregation in binary mixtures[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2000(1):550-556.
[64] Bogoyavlenskiy VA.;Chernova NA. .Diffusion-limited aggregation: A revised mean-field approach[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2000(5 Pt.b):5422-5428.
[65] Gade D M;Joy M P .Self-organized criticality in dynamics without branch[J].Physical Review E,1998,57(05):5019-5022.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%