欢迎登录材料期刊网

材料期刊网

高级检索

HP40Nb steel, used as a candidate material for ethylene cracking furnace tube, suffers creep and carburization damage from the complex environment of high temperature, high carbon potential and low oxygen partial pressure, and they lead to failure of the furnace tubes ahead of designed life. In order to investigate damage evolution under the complex condition, coupled creep damage and carburization damage constitutive equations were developed according to continuum damage mechanics theory. Based on the finite element ABAQUS code, user subroutines were developed for analyzing damage evolution of ethylene furnace tube under the action of coupled creep-carburization. The results show that carburization accelerates the damage process dramatically, damage value reaches the critical value along the inner surface after serving for 75,000 h under the action of creep-carburization, meanwhile the damage value is only 0.53 along the outer surface after operating the same time under the action of creep alone, which means that microcracks are generated along the inner surface under the action of coupled creep-carburization, fracture begins along the outer surface of tube under the action of creep alone.

参考文献

[1]
[2]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%