利用Matlab图像处理功能计算了钢中夹杂物SEM图像的边缘、二维和三维分形维数,并讨论了边缘分形维数与夹杂物颗粒微观凝聚机制和三维分形维数与其融入顶渣中动力学之间的关系。结果表明:边缘分形维数可定量地表征夹杂物边界轮廓线的曲折复杂程度;对非润湿夹杂物颗粒来说,其边缘分形维数越大,表明气泡易于在其表面生成,从而更加有力于夹杂物的碰撞凝聚长大;夹杂物颗粒的三维分形维数越小,更有利于夹杂物融入渣中而被去除;分形维数是一个影响不规则夹杂物颗粒碰撞、凝聚和去除的重要参数。
The border, 2D and 3D fractal dimensions of SEM image of inclusions in steel were calculated by using image processing function of Matlab software, and the relationship between border fractal dimension and micro agglomerating mechanism of inclusion particles, as well as 3D fractal dimension and the dissolution dynamic of inclusion in slag were discussed. The results show that the complexity of border of inclusion can be specified quantitatively by border fractal dimension; bubbles are easily generated on the surface of inclusion particle, of which the border fractal dimension is large, that is helpful for agglomeration of inclusion particles; more smaller 3D fractal dimension, more beneficial for dissolution of inclusion in slag; fractal dimension is an important influence factor for collision, agglomeration and dissolution of irregular inclusion particles.
参考文献
[1] | |
[2] | Li H, Wen J, Zhang J M, et al. Simulation on cluster-agglomeration of inclusions in molten steel with DLA model. J Univ Sci Technol Beijing, 2006, 28(4):343(李宏, 温娟, 张炯明, 等. 应用DLA模型模拟钢中夹杂物集团凝聚. 北京科技大学学报, 2006,28(4):343)[2] Li H, Guo L F, Pan Y H, et al. Simulation on agglomeration of inclusions in steel with DLA model under three-dimensional condition. The Chinese journal of Process Engineering, 2009, 9(Suppl.No.1): 312(李宏, 郭洛方, 潘永红, 等.应用DLA模型对钢中夹杂物凝聚过程的三维模拟. 过程工程学报, 2009, 9(Suppl.No.1): 312)[3] Ning L X, Li H, Zhang J M, et al. Research on steel inclusion’s fractal dimension. Journal of Iron and Steel Research, 2006, 28(4):343(宁林新, 李宏, 张炯明, 等. 钢中夹杂物的分形维数. 钢铁研究学报, 2005, 17(6): 59)[4] A. Thill, S. Veerapaneni, B. Simon, et al. Determination of structure of aggregates by confocal scanning laser microscopy. Journal of Colloid and Interface Science, 1998, 204(2):357.[5] Clifford P. Johnson, Xiaoyan Li, Bruce E. Logan et al. Settling velocity of fractal aggregates. Environ. Sci. Tech, 1996, 30(6):1911.[6] P. A. Baron, C.M. Sorensen, J.E. Brockmann. Non-spherical particle measurement: shape factors, fractals, and fibers, in: P.A. Baron, K. Willeke (Eds.), Aerosol Measurement. Principles, Techniques, and Applications, 2nd edition, Wiley-Interscience, Hoboken, 2001.[7] Nelson Ibaseta, Béatrice Biscans. Fractal dimension of fumed silica: Comparison of light scattering and electron microscope methods. Powder Technology: 2010, 203(2):206.[8] Hirokazu Tozawa, Y. Kato. Agglomeration and floatation of alumina cluster in molten steel. Current Advances in Materials and Processes, 1999, 12(4): 678.[9] Michel Cournil, Frederic Gruy, Pascal Gardin, et al. Modelling of solid particle aggregation dynamics in non-wetting liquid medium. Chemical Engineering and Processing, 2006, 45(7): 586. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%