{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文利用红外热成像仪对不锈钢微管内水的流动沸腾的壁面瞬态温度场进行了测量.结果表明,相比传统的热电偶测量方式,在微尺度实验中采用红外温度测量瞬态温度场具有更高的可靠性.利用红外温度测量的显示特点,预测不锈钢微管内流动沸腾流型变化情况,在本文的实验条件下,不锈钢微管内水的流动沸腾流型变化基本上是以单相流、汽塞流和环状流的交替产生为主.","authors":[{"authorName":"颜晓虹","id":"91adcdc7-3c0b-4732-9d62-0f764c94da86","originalAuthorName":"颜晓虹"},{"authorName":"唐大伟","id":"50f3bd26-8682-436a-882a-4319ceda5970","originalAuthorName":"唐大伟"},{"authorName":"王际辉","id":"6f600e10-ae6d-4660-b08f-c9db634ef52d","originalAuthorName":"王际辉"}],"doi":"","fpage":"679","id":"59b2216e-549c-4f7c-bbfd-6d1b0872dd16","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d02d4206-b870-41e6-a282-e28415b03ad3","keyword":"红外热成像仪","originalKeyword":"红外热成像仪"},{"id":"00b46e13-bcea-4be5-a5b3-cc63dc4ff393","keyword":"流动沸腾流型","originalKeyword":"流动沸腾流型"},{"id":"2f45586b-cbfd-42b5-b770-544c8cf7f75a","keyword":"微管","originalKeyword":"微管"}],"language":"zh","publisherId":"gcrwlxb200604045","title":"利用红外温度测量方式预测微管内流动沸腾流型","volume":"27","year":"2006"},{"abstractinfo":"以球形燃料核反应堆为工程应用背景,分别对直径4 mm、6 mm、8 mm颗粒堆积的多孔结构进行了流动沸腾可视化试验,在实验参数范围内得到了泡状流、泡状-弹状流、弹状流、弹状-环状流四种流型.获得了热流密度、流速、颗粒直径等对流型的影响规律.增加热流密度,汽泡数量增加,体积变大,变形、合并、分裂频繁;流速越高、颗粒越小,汽泡体积越小、数量越少.流速越高、球径越小发生相同流型所需要的热流密度越大.对Tung/Dhir模型进行修正得到了多孔结构内流动沸腾两相流流型图及各流型间的转变含气率.","authors":[{"authorName":"张晓杰","id":"c0ae1c20-b70b-43ad-b060-1014aaed9643","originalAuthorName":"张晓杰"},{"authorName":"苏望","id":"7f9e17a5-77ef-4271-96b0-3f4283367060","originalAuthorName":"苏望"},{"authorName":"白博峰","id":"04e2269b-8d12-40fb-bdbc-4b25fddbb5f0","originalAuthorName":"白博峰"},{"authorName":"阎晓","id":"df987991-72d1-4d4e-ba33-da525d3734ad","originalAuthorName":"阎晓"}],"doi":"","fpage":"967","id":"2104dc64-d2fc-43d9-bfd8-c6bacf754274","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"671cc4d3-7132-4790-9f53-1dbdd74c4997","keyword":"多孔结构","originalKeyword":"多孔结构"},{"id":"7a8adeb2-f571-473d-8a94-0c2191b1e526","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"a0623240-a192-49ba-a06b-a57d7a1a24f7","keyword":"流型","originalKeyword":"流型"},{"id":"1708491c-a7f8-4b4f-abb3-24f6c3a9c479","keyword":"流型转变","originalKeyword":"流型转变"}],"language":"zh","publisherId":"gcrwlxb200906017","title":"多孔结构内流动沸腾流型分类及转变研究","volume":"30","year":"2009"},{"abstractinfo":"本文设计了一套针对微圆管内流动沸腾现象进行实验研究的实验台,并对微圆管内流动沸腾流型变化及分布进行了可视化实验研究.在一定质量流率、进口温度情况下,利用高速摄影仪对均匀受热的内径为530 μm的水平布置的石英玻璃毛细管内水的流动沸腾流型进行拍摄,得到了相应条件下微管内的相变流型分布图.","authors":[{"authorName":"颜晓虹","id":"e686bb1f-b3e9-42a5-a4df-e2c9745427a2","originalAuthorName":"颜晓虹"},{"authorName":"赵耀华","id":"be28d2fb-5e04-4f18-b1fb-6986bc8430dd","originalAuthorName":"赵耀华"}],"doi":"","fpage":"183","id":"41f94270-ebbe-41ed-8740-2b4c5888c0af","issue":"z1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2d982c65-492f-4ab9-905f-77adc2502acb","keyword":"高速摄影仪","originalKeyword":"高速摄影仪"},{"id":"d859e7a0-5169-4ecb-9b14-f1a3428167fc","keyword":"可视化","originalKeyword":"可视化"},{"id":"c4c15bc9-9fd9-416d-bb2f-360c28b21b87","keyword":"流型","originalKeyword":"流型"},{"id":"ca7b86d8-68e4-4cc5-9aae-923d1121b33f","keyword":"石英玻璃毛细管","originalKeyword":"石英玻璃毛细管"}],"language":"zh","publisherId":"gcrwlxb2005z1048","title":"微管内流动沸腾流型的可视化研究","volume":"26","year":"2005"},{"abstractinfo":"采用三维微肋螺旋管进行了制冷剂R134a在管内的流动沸腾传热与流型可视化实验.随着流量和干度的变化,流型可划分为泡状流、塞状流、分层波状流、间歇流以及环状流.在Taitel-Dukler流型图上给出了流型的分区及其转变滗曲线,讨论了螺旋管内两相流动流型转变的特性.传热实验揭示了质量流量、热流密度及蒸汽干度对传热性能的影响,三维微肋螺旋管的强化因子为1.5~2.1.","authors":[{"authorName":"崔文智","id":"3a7c46dc-8574-44f6-ae94-03f697a29a2f","originalAuthorName":"崔文智"},{"authorName":"辛明道","id":"e6bb44d4-ae7d-463b-9f5d-fd700882c209","originalAuthorName":"辛明道"},{"authorName":"廖全","id":"9d91223b-32a7-4f08-9bcc-e2f9e3d1aa66","originalAuthorName":"廖全"}],"doi":"","fpage":"451","id":"faf3142f-c500-43b8-b679-72ce1ab3004a","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"07e28f9a-04da-4b41-81f5-509bdbb76fd3","keyword":"微肋螺旋管","originalKeyword":"微肋螺旋管"},{"id":"e3ac52cc-af2e-4467-91c6-552b87d28467","keyword":"流动沸腾","originalKeyword":"流动沸腾"},{"id":"c50fb7cb-b090-4787-b5b6-aa3ee96b1bc2","keyword":"强化传热","originalKeyword":"强化传热"},{"id":"5e90cffa-1b12-4e6e-9201-8ce2d6f0cfba","keyword":"流型","originalKeyword":"流型"}],"language":"zh","publisherId":"gcrwlxb200303026","title":"三维微肋螺旋管内流动沸腾流型与传热性能","volume":"24","year":"2003"},{"abstractinfo":"在蒸发温度为5~15℃,热流密度范围为5~20 kW·m-2,工质质量流速变化范围为50~500 kg·m-2.s-1和干度范围为0.01~0.9的条件下,对R134a在卧式螺旋管内的流动沸腾流型及阻力特性进行了实验研究.利用可视化技术对R134a在卧式螺旋管内的流动沸腾流型进行了观察分析,发现了两种新流型,对卧式螺旋管的上升段和下降段分别建立了流型图.获得了阻力特性的基础数据,通过对实验数据回归分析,发展了摩擦阻力系数计算关联式.","authors":[{"authorName":"邵莉","id":"90ef8514-1525-40fd-897b-603ffe378868","originalAuthorName":"邵莉"},{"authorName":"韩吉田","id":"a9382a51-2a74-4202-9a79-f04da960685a","originalAuthorName":"韩吉田"},{"authorName":"陈文文","id":"0ca4575d-cc34-4384-883f-f9166d38976d","originalAuthorName":"陈文文"},{"authorName":"陈常念","id":"76d7f624-479e-4943-a53d-146390f5eace","originalAuthorName":"陈常念"},{"authorName":"王美霞","id":"f88d1375-41db-47e8-bd2c-53da2eded136","originalAuthorName":"王美霞"},{"authorName":"潘继红","id":"1b58ac1f-1ec7-41b5-bc99-f5d0811d063b","originalAuthorName":"潘继红"}],"doi":"","fpage":"1045","id":"aec2155a-e04f-4789-ba2f-c80a60161091","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c16ceba7-0abb-4674-8b64-25204f206366","keyword":"流动沸腾","originalKeyword":"流动沸腾"},{"id":"cac7bfdb-6de7-4fa7-b578-d023b07677c6","keyword":"流型","originalKeyword":"流型"},{"id":"d7b86205-75b9-4a39-9572-d1efc7a69f68","keyword":"流动阻力","originalKeyword":"流动阻力"},{"id":"fc6f2575-7f21-4008-9a7b-96c762b37ced","keyword":"卧式螺旋管","originalKeyword":"卧式螺旋管"},{"id":"eb087879-89ee-4610-b339-a75705d06b08","keyword":"R134a","originalKeyword":"R134a"}],"language":"zh","publisherId":"gcrwlxb201006038","title":"R134a卧式螺旋管内沸腾流型与阻力特性实验研究","volume":"31","year":"2010"},{"abstractinfo":"通过高速CCD可视化实验,在气体表观速度0.01~26.5m/s,液体表观速度0.01~1.2m/s范围内,对内径为1.931mm垂直向上圆管内液氮流动沸腾流型特性进行了研究.所观测的主要流型为:泡状流,弹状流,搅拌流和环状流.并绘制了流型图,发现环状流占了大部分的区域,干度大于0.15的区域基本上都是环状流.分析了流量对流型转变的影响,流量越大,相应的流型转变干度越低,而且流量大于820kg/m2s时,没有发现泡状流.通过与相同水力直径的空气-水的流型图比较,发现本文中的弹状流区域要小很多.通用的流型转变模型预测结果与实验结果相差较大.","authors":[{"authorName":"付鑫","id":"e6cd580c-42a7-4ff3-9545-f342d90213ac","originalAuthorName":"付鑫"},{"authorName":"齐守良","id":"49e256d8-db93-43af-9c10-fe332de12ab4","originalAuthorName":"齐守良"},{"authorName":"张鹏","id":"d6bbfa74-60fb-4455-80d6-29de48d615b8","originalAuthorName":"张鹏"},{"authorName":"王如竹","id":"9a50424a-eae0-4cb5-95e7-04659c9438cf","originalAuthorName":"王如竹"}],"doi":"","fpage":"1035","id":"fbeb61f6-d5fa-4f77-afd5-6d8c1f532231","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c550f86f-477b-4496-b240-b317f76b8649","keyword":"小通道","originalKeyword":"小通道"},{"id":"2d23a631-4dc9-4b3e-8621-9c481ff8301c","keyword":"液氮","originalKeyword":"液氮"},{"id":"3fdc8dfa-bd49-4824-a301-a858137e2e21","keyword":"流型","originalKeyword":"流型"},{"id":"8bbdd94f-d5bf-4276-9148-490193d523ff","keyword":"流动沸腾","originalKeyword":"流动沸腾"}],"language":"zh","publisherId":"gcrwlxb200806035","title":"小通道内液氮流动沸腾的可视化研究","volume":"29","year":"2008"},{"abstractinfo":"实验观测了水力直径为150 μm,宽深比3,通道壁面水接触角为130°的疏水矩形微通道内的流动冷凝过程.发现疏水微通道内的流型主要有珠状流、珠状-环状复合流、珠状-喷射复合流和弹状-泡状流.由于壁面的疏水性,喷射流处仍能观察到珠状凝结.珠状-喷射复合流的位置随入口蒸汽Reynolds数的增大而向通道出口移动,喷射频率随Rev增大而增大.珠状-喷射复合流之后为弹状-泡状流,喷射流产生汽泡会冲击前一汽泡并合并流向通道出口.","authors":[{"authorName":"沈超群","id":"13f22e0c-21f1-48b2-aead-d2d9b9de961e","originalAuthorName":"沈超群"},{"authorName":"陈永平","id":"02f2fc67-3a09-43f4-a29c-dcef5e939fea","originalAuthorName":"陈永平"},{"authorName":"施明恒","id":"ef44ff97-fced-4b0a-9d8c-c2bf734dcbd0","originalAuthorName":"施明恒"}],"doi":"","fpage":"118","id":"9cccca59-239d-4dfc-a2e6-6069c697d923","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"9f1f80a4-62e1-4dca-9132-d20941367c2b","keyword":"流动冷凝","originalKeyword":"流动冷凝"},{"id":"c286cf43-e3b1-4a09-aacb-584fe9e14e5d","keyword":"疏水微通道","originalKeyword":"疏水微通道"},{"id":"b248b6d7-d3f3-496e-ad55-ac2bfd6d84cf","keyword":"流型","originalKeyword":"流型"},{"id":"c0b266d2-954e-4b9e-8e8c-a40f55141fa1","keyword":"珠状凝结","originalKeyword":"珠状凝结"}],"language":"zh","publisherId":"gcrwlxb201301029","title":"疏水微通道内流动冷凝流型实验研究","volume":"34","year":"2013"},{"abstractinfo":"采用可视化方法对水的降膜流动过程进行了实验研究,考察了两异形管(蛋形管和滴形管)管间流型及其转变、降膜波长随Re数和管型的分布规律,并与圆管进行了对比分析.实验结果表明:各管的管间流型均随Re数的增大依次呈现滴状流、滴柱状流、柱状流、柱片状流和片状流;相较于圆管,两异形管的各流型更易在较低的Re数下获得,且流型较稳定.随着Re数增加和管间距S的降低,降膜波长呈减小趋势.两异形管的降膜波长较圆管的低,且蛋形管的流型转变Re数最低.","authors":[{"authorName":"罗林聪","id":"e5cfc527-bd4c-4470-8eed-1da5a60de51b","originalAuthorName":"罗林聪"},{"authorName":"张冠敏","id":"3ea02ab3-0337-4851-9eba-d7f8181ec73b","originalAuthorName":"张冠敏"},{"authorName":"潘继红","id":"b5452ce0-cf9a-4b65-8e44-6be580d02d87","originalAuthorName":"潘继红"},{"authorName":"田茂诚","id":"a9314b02-f69c-49a3-82d7-efd0111545ea","originalAuthorName":"田茂诚"}],"doi":"","fpage":"636","id":"e3307202-0917-40f3-ad7a-b59fcbe004ea","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"64d4506d-7d65-42d3-9726-8488d02e1796","keyword":"异形管","originalKeyword":"异形管"},{"id":"75eb6b84-e8fb-46d9-8698-9fe08c245cdd","keyword":"管间流型","originalKeyword":"管间流型"},{"id":"af5e90e5-6bf6-4d41-aa1f-8c8de9e0166c","keyword":"降膜波长","originalKeyword":"降膜波长"},{"id":"5c4ec4d5-96cc-4aac-ad2b-4fb6da611488","keyword":"两相流","originalKeyword":"两相流"}],"language":"zh","publisherId":"gcrwlxb201503039","title":"异形管束降膜流动流型及波长的分布规律","volume":"36","year":"2015"},{"abstractinfo":"以蒸馏水为工质进行了实验研究.分析了影响流动总压降的因素,给出了计算摩擦压降的经验关系式,实验数据与计算结果误差约士15%,此关系式可以用来预测该实验范围内的摩擦压降.同时还给出了计算流动沸腾传热系数的经验关系式,实验数据与计算结果误差为-17%~13%,此关系式可以用来预测该实验范围内的流动沸腾传热系数.","authors":[{"authorName":"苏顺玉","id":"41ad0e13-a043-45e6-9a03-5fdb761913ce","originalAuthorName":"苏顺玉"},{"authorName":"黄素逸","id":"8e591e81-831a-4eaa-bdb3-e8c4bb070804","originalAuthorName":"黄素逸"},{"authorName":"王晓墨","id":"cbe9dfc5-ace9-428b-afbb-39eb0fef49a0","originalAuthorName":"王晓墨"}],"doi":"","fpage":"106","id":"2a91240c-06a7-49ad-8ef6-6aa87e6fb3ef","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c8a6a2e8-dc9a-411c-8c60-45914b77a0fc","keyword":"环状狭缝","originalKeyword":"环状狭缝"},{"id":"21cee262-e774-4f8e-a45f-e24b9a52347f","keyword":"流动沸腾","originalKeyword":"流动沸腾"},{"id":"871cebe6-79e0-42e3-a957-91def4036bdd","keyword":"摩擦压降","originalKeyword":"摩擦压降"},{"id":"78daffa4-4a4e-47d0-97ef-c119f9f04b07","keyword":"传热系数","originalKeyword":"传热系数"},{"id":"6403492d-14d0-436a-958d-c881bd5a454c","keyword":"经验关系式","originalKeyword":"经验关系式"}],"language":"zh","publisherId":"gcrwlxb200401031","title":"环状狭缝通道流动沸腾换热的实验研究","volume":"25","year":"2004"},{"abstractinfo":"利用可视化手段实验研究矩形截面微通道过冷流动沸腾中的气泡滑移现象.实验使用截面尺寸为1 mm×1 mm的铜基微通道,使用工质为去离子水,气泡滑移过程由高速CCD相机观察并记录.实验研究发现,微通道过冷流动沸腾中的气泡滑移过程可区分为低速滑移阶段和高速滑移阶段,在不同阶段气泡直径、气泡接触直径以及气泡滑移速度具有不同的变化特点,而且气泡的最大滑移速度发生于气泡脱离通道壁面而进入主流的时刻.同时研究了运行工况对于气泡滑移过程的影响,发现滑移气泡的最大滑移距离和最大滑移速度均随沸腾数Bo的增加而增大.","authors":[{"authorName":"银了飞","id":"97be829f-6a22-4a57-848b-b84a78f3bdb3","originalAuthorName":"银了飞"},{"authorName":"贾力","id":"b994929f-7c73-44fb-a88d-198529dc379b","originalAuthorName":"贾力"},{"authorName":"许茗宸","id":"19bf5838-2350-4908-a365-12f13f6baf8d","originalAuthorName":"许茗宸"}],"doi":"","fpage":"884","id":"ee318991-9f7e-4e2d-9b72-d2d10046f9b0","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f04c89e2-d520-4c40-88f4-29831e7c7520","keyword":"微通道","originalKeyword":"微通道"},{"id":"0866c9a1-fe59-4d7d-b172-1d6daacb080e","keyword":"过冷流动沸腾","originalKeyword":"过冷流动沸腾"},{"id":"c35e6c75-60a8-4b7e-8fe6-bdfb59ea67d3","keyword":"气泡滑移","originalKeyword":"气泡滑移"},{"id":"5f3fe3cb-e4b3-4560-b5f6-db534171ce2f","keyword":"滑移距离","originalKeyword":"滑移距离"},{"id":"1371c6eb-ca62-4dea-a19d-426e3f9430e6","keyword":"滑移速度","originalKeyword":"滑移速度"}],"language":"zh","publisherId":"gcrwlxb201504040","title":"微通道过冷流动沸腾气泡滑移特性研究","volume":"36","year":"2015"}],"totalpage":702,"totalrecord":7015}