采用一步溶胶-凝胶共缩合结合溶剂热合成技术制备出一系列介孔电气石/TiO2复合材料,表征了复合材料的相结构、形貌、孔隙率、光吸收性质以及组成结构.结果表明:制备的电气石/TiO2复合材料具有纯锐钛矿晶相、均匀的介孔结构、较大的比表面积(205~242 m2·g-1)、均匀的孔径分布(3.4~3.8 nm)以及较低的带隙能(3.0 eV).在模拟太阳光照射下,电气石/TiO2复合材料可以被成功地应用于水中有机污染物罗丹明B和诺氟沙星的降解.降解动力学研究表明:电气石的掺杂提高了TiO2的光催化量子效率,降低了TiO2的带隙能.对罗丹明B的降解,电气石掺杂量为1wt%~5wt%的电气石/TiO2复合材料表现出比纯TiO2更高的降解速率,对诺氟沙星的降解,电气石/TiO2复合材料的降解速率高于纯TiO2的.
参考文献
[1] | Guan M L;Xiao C;Zhang J.Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets[J].Journal of the American Chemical Society,2013135(28):10411-10417. |
[2] | Feng N D;Wang Q;Zheng A M.Understanding the high photocatalytic activity of (B,Ag)-codoped TiO2 under solar-light irradiation with XPS,solid-state NMR,and DFT calculations[J].Journal of the American Chemical Society,2013135(04):1607-1616. |
[3] | 张亚南;付乌有;李伊荇.CdS/TiO2纳米棒阵列复合材料的制备及其光电化学特性[J].复合材料学报,201330(02):99-104. |
[4] | Li K X;Yang X;Guo Y N.Design of mesostructured H3PW12O40-titania materials with controllable structural orderings and pore geometries and their simulated sunlight photocatalytic activity towards diethyl phthalate degradation[J].Applied Catalysis B:Environmental,201099(1-2):364-375. |
[5] | Li K X;Xiong J J;Chen T.Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation[J].Journal of Hazardous Materials,2013250-251:19-28. |
[6] | Saavedra J;Powell C;Panthi B.CO oxidation over Au/TiO2 catalyst:pretreatment effects,catalyst deactivation,and carbonates production[J].Journal of Catalysis,2013307:37-47. |
[7] | Chen D L;Chen Q Q;Ge L F.Synthesis and Ag load ing-density dependent photocatalytic activity of Ag@TiO2 hybrid nanocrystals[J].Applied Surface Science,2013284:921-929. |
[8] | Li N;Chen Q Y;Luo L F.Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts[J].Applied Catalysis B:Environmental,2013142-143:523-532. |
[9] | Inturi S;Boningari T;Suidan M.Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V,Cr,Fe,Co,Mn,Mo,Ni,Cu,Y,Ce,and Zr) doped TiO2[J].Applied Catalysis B:Environmen tal,2014144:333-342. |
[10] | Choudhury B;Choudhury A.Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanopar ticles[J].Materials Chemistry and Physics,2012132(2-3):1112-1118. |
[11] | Devi L G;Kumar S G;Murthy B N.Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination[J].Catalysis Communications,200910(06):794-798. |
[12] | Liang J S;Meng J P;Liang G C.Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders[J].Transactions of Nonferrous Metals Society of China,200616:542-546. |
[13] | Zhang G K;Qin X.Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites[J].Materials Research Bulletin,201348(10):3743-3749. |
[14] | Nguyen-Phan T;Pham V H;KimE J.Reduced graphene oxide-titanate hybrids:morphologic evolution by alkali-solvothermal treatment and applications in water purification[J].Applied Surface Science,2012258(10):4551-4557. |
[15] | Seo Y G;Kim M A;Lee H.Solution processed thin films of non aggregated TiO2 nanoparticles prepared by mild solvothermal treatment[J].Solar Energy Materials and Solar Cells,201195(01):332-335. |
[16] | Mahltig B;Gutmann E;Meyer D C.Solvothermal preparation of nanocrystalline anatase containing TiO2 and TiO2/SiO2 coating agents for application of photocatalytic treat ments[J].Materials Chemistry and Physics,2011127(1-2):285-291. |
[17] | Shen X J;Zhang J L;Tian B Z.Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile[J].Journal of Hazardous Materials,2011192(02):651-657. |
[18] | Archana J;Navaneethan M;Hayakawa Y.Solvothermal growth of high surface area mesoporous anatase TiO2 nano-spheres and investigation of dye-sensitized solar cell properties[J].Journal of Power Sources,2013242:803-810. |
[19] | Yang G D;Yang B L;Xiao T C.One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity[J].Applied Surface Science,2013283:402-410. |
[20] | Zhang Z;Chu Q X;Li H Y.One-pot solvothermal synthesis of graphene-supported TiO2 (B) nanosheets with enhanced lithium storage properties[J].Journal of Colloid and Interface Science,2013409:38-42. |
[21] | Mattsson A;(O)sterlund L.Adsorption and photoinduced decomposition of acetone and acetic acid on anatase,brookite,and rutile TiO2 nanoparticles[J].The Journal of Physical Chemistry C,2010114(33):14121-14132. |
[22] | Panayotov D A;Burrows S P;Yates J T.Mechanistic studies of hydrogen dissociation and spillover on Au/TiO2:IR spectroscopy of coadsorbed CO and H-donated electrons[J].The Journal of Physical Chemistry C,2011115(45):22400-22408. |
[23] | Shibata H;Ogura T;Mukai T.Direct synthesis of mesoporous titania particles having a crystalline wall[J].Journal of the American Chemical Society,2005127(47):16396-16397. |
[24] | Liu H M;Yang W S;Ma Y.Synthesis and character ization of titania prepared by using a photoassisted sol-gel method[J].LANGMUIR,200319(07):3001-3005. |
[25] | Lv P;Fu W Y;Yang H B.Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity[J].CRYSTENGCOMM,201315:7548-7555. |
[26] | Paul S;Chetri P;Choudhury A.Effect of manganese doping on the optical property and photocatalytic activity of nanocrystalline titania:experimental and theoretical investigation[J].Journal of Alloys and Compounds,2014583:578-586. |
[27] | Liu X L;Lv P;Yao G X.Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014441:420-426. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%