本文针对一类复杂的多孔复合介质的热传导和质扩散问题,给出具体的多尺度渐近展开公式, 并在此基础上设计了有限元算法格式, 它是宏观和细观相结合的数值方法。 理论分析和数值实验均表明: 多尺度数值方法对求解多孔复合介质周期结构的热传导和质扩散问题是可行的和有效的
In this paper, we shall advance multiscale finite element computing formulasbased on the multisacle asymptotic analysis method for the heat and masstransfer problems of composite porous media with a periodic structure.Because there are a complicated mesoscopic configuration and a large numberof degree of freedom, is is very difficult to solve these problems by usingthe usual analytic methods or numerical methods. The theoretical analysisand numerical experiments show that the multiscale finite element methodpresented in this paper is very effective to solve above these kinds ofproblems
参考文献
[1] | 王补宣.工程传热传质学[M].北京:科学出版社,1998 |
[2] | Bensoussan;J L Lions;G Papanicolou.Asymptotic Analysis ofPeriodic Structure[J].North-Holland,The Amsterdan,1970 |
[3] | L Lions.Some Method in the Mathematical Analysis of Systemsand Their Control[M].北京:科学出版社,1981 |
[4] | 崔俊芝,曹礼群.一类具有小周期系数的椭圆型边值问题的双尺度渐近分析方法[J].计算数学,1999(01):19-28. |
[5] | 崔俊芝;曹礼群 .基于双尺度渐近分析的有限元法[J].计算数学,1998,20(01):89-102. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%