{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"常用的硫系、铅系易切削钢,冶炼时空气污染严重,且铅有毒,对人体有害.随着人们环保意识的加强,这类易切削钢的生产、使用将受到限制.因此,开发和生产低硫、无铅易切削钢是未来的重要发展方向.锡易切削钢、铋易切削钢、石墨易切削钢由于不添加对人和环境有害的元素,是一种非常友好的开发钢种.概述了锡易切削钢、铋易切削钢、石墨易切削钢这3类机械结构用无铅易切削钢的发展情况.","authors":[{"authorName":"张永军","id":"276e0180-ef4e-4bfd-8d74-9dc007a8a1c4","originalAuthorName":"张永军"},{"authorName":"朱辰","id":"5bd88e1f-e22e-4df8-be38-31226d9b6d36","originalAuthorName":"朱辰"},{"authorName":"","id":"a22856a9-f76a-4427-b5f8-d4cb1e0e1ddb","originalAuthorName":"王立峰"},{"authorName":"赵唤春","id":"92e7433d-ad82-4ed7-92f6-f2bbcabb41f0","originalAuthorName":"赵唤春"},{"authorName":"陈明跃","id":"dd2071bd-b2db-41db-becd-c1a77f016471","originalAuthorName":"陈明跃"},{"authorName":"全礼","id":"1e952922-19ad-4c04-bb44-264363fd9796","originalAuthorName":"王全礼"},{"authorName":"金永春","id":"c4f352d1-5ff8-4ee7-bdfc-1004bea9611d","originalAuthorName":"金永春"},{"authorName":"韩静涛","id":"031fefa1-3f4f-478f-844a-93a24a0c1de0","originalAuthorName":"韩静涛"}],"doi":"","fpage":"68","id":"fd79a241-2083-4117-93c7-56a3820c54de","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1901ee91-8bd8-43f7-a842-6cf7e3711e58","keyword":"易切削钢","originalKeyword":"易切削钢"},{"id":"199c4e29-f1dd-4f58-ac92-4ce177e52bf1","keyword":"锡","originalKeyword":"锡"},{"id":"0fc16cc4-6f4e-4626-923a-bdc6abd0df14","keyword":"铋","originalKeyword":"铋"},{"id":"981743da-c076-47e4-b4bd-d868da40a375","keyword":"石墨","originalKeyword":"石墨"}],"language":"zh","publisherId":"cldb200512019","title":"机械结构用无铅易切削钢的发展","volume":"19","year":"2005"},{"abstractinfo":"采用ON和SEM分析方法研究了帘线钢空气气氛下连续氧化行为以及高线精轧、吐丝温度对热轧盘条表面氧化铁皮厚度和相组成的影响,同时采用热模拟方法分析了FeO层发生先共析、共析转变生成Fe3O4的条件.实验结果表明,945℃是帘线钢快速氧化起点温度,随着温度升高,氧化速率急剧增加;而当温度降低到700℃时,氧化过程极其缓慢.控制700~ 945℃范围内的冷速是控制氧化铁皮厚度及相组成的关键工艺.高线生产控制精轧和吐丝温度在900~940℃,氧化铁皮厚度7~20 μm,FeO质量分数为65%~ 80%,具有最佳除鳞性能.热模拟分析表明,400~500℃是FeO层发生共析转变的“鼻尖”温度,孕育期最短.提高400~500℃区间冷速可抑制FeO层发生共析转变,使机械除鳞率提高3%左右.","authors":[{"authorName":"丽萍","id":"a6b71235-3131-485d-bcf2-6b0ae6dc506e","originalAuthorName":"王丽萍"},{"authorName":"","id":"c97e3d22-bf1a-4d2f-a484-685f57173bc8","originalAuthorName":"王立峰"},{"authorName":"罗志俊","id":"cb72acb4-5490-4ee0-8fd2-b6d3d7a56186","originalAuthorName":"罗志俊"},{"authorName":"李舒笳","id":"2b7a06a8-4821-4817-904c-ca63714bbec6","originalAuthorName":"李舒笳"},{"authorName":"勇","id":"1f248684-11bb-406e-9f88-00251ff6f5f7","originalAuthorName":"王勇"},{"authorName":"猛","id":"f5b2548b-becd-42d4-b448-7ad72500c8b5","originalAuthorName":"王猛"},{"authorName":"马跃","id":"20f3b6e4-c11a-441e-8aa3-eca8fdd1439a","originalAuthorName":"马跃"}],"doi":"","fpage":"94","id":"68d89f17-8711-4c91-bf58-10a9b452b9b2","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"9f0b76d1-f5d9-41e8-80cc-5afc94a752a1","keyword":"帘线钢","originalKeyword":"帘线钢"},{"id":"ea389dfc-2956-458b-b582-92f8aa21aca2","keyword":"轧制工艺","originalKeyword":"轧制工艺"},{"id":"8886afe6-7f63-447c-8885-2adf7f4380c5","keyword":"氧化铁皮","originalKeyword":"氧化铁皮"},{"id":"3ee1e01a-4161-4a73-88fb-9d382d741edc","keyword":"FeO层","originalKeyword":"FeO层"},{"id":"eb766dd1-b627-4e3e-9354-23319ed7c1c4","keyword":"先共析Fe3O4","originalKeyword":"先共析Fe3O4"},{"id":"7b6465d6-7456-4939-bce3-d52ff0e82145","keyword":"共析转变","originalKeyword":"共析转变"}],"language":"zh","publisherId":"clkxygy201401016","title":"帘线钢表面氧化优化工艺及控制机理研究","volume":"22","year":"2014"},{"abstractinfo":"以高纯镁砂(5~2、≤2和≤0.088 mm)、电熔铁铝尖晶石(3~1和≤0.088 mm)为原料,亚硫酸纸浆废液为结合剂,配料混练后机压成型为36 mm ×36 mm及25 mm ×25 mm ×140 mm的试样,经110℃24 h烘干,然后于1650℃3 h热处理。采用热膨胀仪、弹性模量仪、SEM等对试样进行了分析研究,分别研究了FeAl2 O4粒度(3~1或≤0.088 mm)及加入量(质量分数为0、2%、4%、6%、8%、10%、12%)对方镁石-铁铝尖晶石质耐火材料性能的影响。结果表明:随着FeAl2 O4添加量的增加,试样的常温强度、线膨胀系数、弹性模量降低。FeAl2 O4以细粉形式加入时,试样的常温强度、弹性模量比以颗粒形式加入的要大;加入约4%(w)FeAl2 O4就能明显改善镁质制品的抗热震性,其抗热震提高的机制以微裂纹增韧为主;固定尖晶石加入量为8%(w),尖晶石以细粉形式加入时,试样中FeAl2 O4可完全反应为(Mg,Fe)Al2 O4,以颗粒形式加入时,仅会在颗粒周围生成少量(Mg,Fe)Al2 O4。","authors":[{"authorName":"周芬","id":"d2da4ae5-5ad4-45f6-b8f5-4ee0995edd45","originalAuthorName":"周芬"},{"authorName":"赵惠忠","id":"63a1c37a-11cf-47da-b621-46a0db5092d9","originalAuthorName":"赵惠忠"},{"authorName":"","id":"8cf243bb-a11b-4c35-91eb-28c47691d68c","originalAuthorName":"王立峰"},{"authorName":"慕松林","id":"9cfde7c8-199a-4969-b1d0-00186a0f53ce","originalAuthorName":"慕松林"},{"authorName":"崔江涛","id":"bc1a67f5-ccc6-4bde-8098-9aa1b5fd262c","originalAuthorName":"崔江涛"},{"authorName":"吕永","id":"a46e35de-aba5-40cc-9db2-f22e42bbd7b1","originalAuthorName":"吕永峰"}],"doi":"10.3969/j.issn.1001-1935.2014.02.003","fpage":"89","id":"023faea9-edfd-40a4-854d-9cfbd4778c60","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"8f591adc-0933-4e05-964e-42d98df9a882","keyword":"方镁石-铁铝尖晶石","originalKeyword":"方镁石-铁铝尖晶石"},{"id":"d377d369-886e-453d-9376-0d153e5f52e0","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"fb644232-d108-44fe-b147-7e682c25fde3","keyword":"粒度","originalKeyword":"粒度"},{"id":"b4020de6-cb59-41c9-b8c2-4f8728bb7879","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"c190fdf6-6f58-4f8b-82b7-6f85d462c4dc","keyword":"抗热震性","originalKeyword":"抗热震性"}],"language":"zh","publisherId":"nhcl201402003","title":"FeAl2O4对方镁石-铁铝尖晶石质耐火材料性能的影响","volume":"","year":"2014"},{"abstractinfo":"研究了热塑性氟塑料聚全氟乙丙烯(FEP)和金属的连接方法,包括过渡层粘接和机械连接两种.采用自制的过渡层,利用模塑方法使FEP和不锈钢的粘接强度达到16 MPa以上.同时采用机械滚边收口方法,可以提高FEP和金属骨架的连接可靠性.","authors":[{"authorName":"","id":"2a95d545-66fe-4810-83fd-a3be823212bc","originalAuthorName":"王立峰"},{"authorName":"段蓉","id":"6295a603-e559-4c92-bfee-a44f584a4d36","originalAuthorName":"段蓉"}],"doi":"10.3969/j.issn.1007-2330.2003.01.012","fpage":"49","id":"03672840-8ed1-4c6e-a013-4ed2cf6fd18c","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"7c53c5f9-d33f-4bab-8295-a869fd3ce213","keyword":"聚全氟乙丙烯(FEP)","originalKeyword":"聚全氟乙丙烯(FEP)"},{"id":"4658c233-6404-4a95-9430-8d389b2ba131","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"d20485bf-9d02-472d-a8ab-9705e41ddb5d","keyword":"粘接","originalKeyword":"粘接"}],"language":"zh","publisherId":"yhclgy200301012","title":"聚全氟乙丙烯塑料和金属连接试验研究","volume":"33","year":"2003"},{"abstractinfo":"针对新型电缆密封结构的密封挡板、密封结构板、橡胶密封板及其连接螺栓建立了有限元模型,考虑了几何、边界及材料非线性因素,计算了模型在螺栓预紧力和气压作用下电缆密封结构的应力和变形,校核该结构的强度是否满足设计要求.结果表明,密封结构的局部出现屈服,需更换更高强度的材料;密封结构密封性能良好,密封性能试验验证了计算结果的合理性.","authors":[{"authorName":"白天","id":"acf49504-5c36-4788-a591-9b6a72e464f8","originalAuthorName":"白天"},{"authorName":"","id":"bb7292b1-10f9-4f8b-9434-d33314c1eb86","originalAuthorName":"王立峰"},{"authorName":"高健","id":"77db75b6-6802-4b45-859d-55a08405d3b4","originalAuthorName":"高健"},{"authorName":"吴福迪","id":"1a737df0-8c53-4a8d-b9cc-fb4b9eff3560","originalAuthorName":"吴福迪"},{"authorName":"曲衍敏","id":"a2fdb424-87da-49d7-878f-abb002f66b68","originalAuthorName":"曲衍敏"}],"doi":"10.3969/j.issn.1007-2330.2012.02.009","fpage":"38","id":"0965dc2e-b2f1-4c13-a36c-c48b3d7d9eaf","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b561df4a-3f3e-4f31-ae2e-b008cb84c76a","keyword":"电缆","originalKeyword":"电缆"},{"id":"d4d5ddad-f430-4f72-b13f-7c5c4fb1f0b4","keyword":"密封","originalKeyword":"密封"},{"id":"9f14fc16-7db0-4ec5-87a5-fa996839e06b","keyword":"非线性","originalKeyword":"非线性"},{"id":"dcf3a247-856a-43b5-b7ef-610e2450dd20","keyword":"橡胶","originalKeyword":"橡胶"},{"id":"d0472f83-c92e-43d9-b10c-6dc4882cc719","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"yhclgy201202009","title":"电缆密封结构的有限元分析","volume":"42","year":"2012"},{"abstractinfo":"根据冶金熔体的共存理论,计算了CaO-MgO-MnO-FeO-SiO2-Al2O3六元渣系各组元的作用浓度.结合生产实际数据,建立了LF精炼过程中精炼渣成分和w[Al]之间氧化还原反应的数学模型,计算了精炼渣成分对w[Al]的影响.结果表明,LF精炼过程中w[Al]受w[Si]、w(FeO)联合控制.低碱度、低Al2O3含量的精炼渣对控制w[Al]有利,如果精炼渣碱度控制在0.9,Al2O3含量(质量分数,下同)控制在3%以下,则可以将w[Al]控制在6×10-6以下.适当提高FeO含量有利于降低w[Al].","authors":[{"authorName":"勇","id":"a9d68358-bcbe-451d-89ca-a5deca0be758","originalAuthorName":"王勇"},{"authorName":"段宏韬","id":"820ae1e9-d6f3-4c8f-92df-67692a2d44b8","originalAuthorName":"段宏韬"},{"authorName":"","id":"2870f03c-959f-4d18-9524-6b22dc92ca28","originalAuthorName":"王立峰"},{"authorName":"魏嵬","id":"89a9e639-40d1-4a12-9b8c-9043faaa7ac8","originalAuthorName":"魏嵬"},{"authorName":"杨伶俐","id":"328b3483-5626-431b-a44e-7e9640bf5997","originalAuthorName":"杨伶俐"}],"doi":"","fpage":"18","id":"0b7cf7d4-aa61-443e-9d95-cc5d87a16cfb","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"e01c5980-fa9b-4a31-8924-21d540c06aea","keyword":"LF精炼","originalKeyword":"LF精炼"},{"id":"681daff7-9b94-466b-836d-07005414f387","keyword":"精炼渣成分","originalKeyword":"精炼渣成分"},{"id":"d8548ca8-c57b-4968-b6d3-e6fb7fea491c","keyword":"w[Al]","originalKeyword":"w[Al]"},{"id":"39c1e841-d326-43d4-8f31-8cc37bc92f28","keyword":"热力学","originalKeyword":"热力学"}],"language":"zh","publisherId":"gtyjxb201303004","title":"LF精炼渣成分对帘线钢中铝含量的影响","volume":"25","year":"2013"},{"abstractinfo":"根据冶金熔体的共存理论,计算了CaO-MgO-MnO-FeO-SiO2-Al2O3六元渣系各组元的作用浓度.结合生产实际数据,建立了LF精炼过程中炉渣成分和钢水[Ca]之间氧化还原反应的数学模型,计算了炉渣成分对钢水[ca]含量的影响.结果表明,LF精炼过程中钢水[Ca]含量受[Si]-(FeO)联合控制,渣中SiO2、FeO质量分数每增加1%,[Ca]质量分数分别降低1.63×10-4和1.55×10-4.为了将[Ca]质量分数控制在10×10-6以下,当FeO质量分数为3%左右时,碱度B应不高于0.9.","authors":[{"authorName":"段宏韬","id":"8b2efb34-db1e-4a5b-b3f6-982e0ccc8eb3","originalAuthorName":"段宏韬"},{"authorName":"勇","id":"3693784e-f693-46e6-9e1f-c34c03192c98","originalAuthorName":"王勇"},{"authorName":"","id":"7569d95d-6773-4830-9718-943d85ab6991","originalAuthorName":"王立峰"},{"authorName":"苍大强","id":"13fa29bf-db55-41a7-92fa-cbd43dfa980c","originalAuthorName":"苍大强"},{"authorName":"魏嵬","id":"89db5767-66af-4907-a5d8-3689e2700472","originalAuthorName":"魏嵬"}],"doi":"","fpage":"33","id":"0eb3d982-e14e-45f0-92cd-0efc86140605","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4fbd7521-dedb-47d1-aa0b-fe571507937e","keyword":"LF精炼","originalKeyword":"LF精炼"},{"id":"bcc26467-9ff6-4793-bc88-928ad26bab4d","keyword":"炉渣成分","originalKeyword":"炉渣成分"},{"id":"15662369-0119-444c-90cd-471d829f48f0","keyword":"[Ca]含量","originalKeyword":"[Ca]含量"},{"id":"d21a0e26-2f8e-44d4-a8fe-b7ee13e8f300","keyword":"热力学","originalKeyword":"热力学"}],"language":"zh","publisherId":"gt200909008","title":"LF精炼过程中炉渣成分对钢水[Ca]含量的影响","volume":"44","year":"2009"},{"abstractinfo":"采用SEM、TGA等表征了炭黑填充导电硅橡胶的性能及结构,并研究其导电机理.结果表明,乙炔炭黑含量对导电硅橡胶的力学性能有明显影响.含量超过45 phr后,其体积电阻率变化不明显,炭黑在橡胶内部形成\"球簇\"和\"簇链\"结构,因而炭黑的增多,增加了\"导电通路\",降低橡胶的体积电阻率;导电硅橡胶的最佳耐热性填充量为50 phr,此时随温度的增加,其拉伸强度下降;在100℃下长期老化后的导电性能下降.","authors":[{"authorName":"张继华","id":"d15763e2-beca-4cca-b800-a8c828644f9a","originalAuthorName":"张继华"},{"authorName":"任灵","id":"666453cb-e8c5-41ac-b1c4-a3bd5d8c598f","originalAuthorName":"任灵"},{"authorName":"","id":"9cc5b695-8cf5-4609-a6d6-21098a484a57","originalAuthorName":"王立峰"},{"authorName":"赵云","id":"1558c9d1-2339-49c3-a4a4-26f2fc8fa046","originalAuthorName":"赵云峰"}],"doi":"10.3969/j.issn.1007-2330.2011.02.020","fpage":"79","id":"1588c9ae-ced1-41e3-9971-ddbb7f5dc25e","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"fb70a642-e515-448d-87ef-6c2aaebbe098","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"2b901cf1-d8cc-4e3e-a05c-c8de94c1e527","keyword":"乙炔炭黑","originalKeyword":"乙炔炭黑"},{"id":"cf0dddbd-e122-43fb-bea1-ee70f279e778","keyword":"导电","originalKeyword":"导电"},{"id":"86274ed7-6a92-4c1a-9f84-1afe9a292319","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"yhclgy201102020","title":"炭黑填充导电硅橡胶的结构与性能","volume":"41","year":"2011"},{"abstractinfo":"为研究低碳贝氏体钢在热处理后的力学、腐蚀疲劳性能,采用扫描电子显微镜、透射电镜、X射线衍射分析研究了一种新型贝氏体钢力学性能,并在自来水和盐水腐蚀介质中研究了其腐蚀疲劳性能.结果表明:与轧材比较,A、B、C钢轧材经正火回火热处理后,表现出更优异的综合力学性能和抗腐蚀疲劳性能;而含Si高的A钢具有更优异的韧塑性及抗腐蚀疲劳性能.含Si的贝氏体钢中的贝氏体铁素体(BF)板条间残余奥氏体(Ar)膜对氢致裂纹的扩展速率有突出的抑制作用.","authors":[{"authorName":"易敏","id":"7c42c7d7-02e1-4809-a3d9-6e57bfe42cf5","originalAuthorName":"易敏"},{"authorName":"王国栋","id":"ddb81128-f3cf-4b05-88d4-2acd927f5206","originalAuthorName":"王国栋"},{"authorName":"陈涛","id":"4e53071a-7958-4696-a051-8f3694abe377","originalAuthorName":"陈涛"},{"authorName":"","id":"edb4d8b6-6384-487e-afb8-b14d60ab1091","originalAuthorName":"王立峰"},{"authorName":"佟倩","id":"c66bd7a4-5dab-431f-a9e5-398e1745e84b","originalAuthorName":"佟倩"}],"doi":"","fpage":"103","id":"175591ef-c86a-4122-b07a-6f0ede0ba7cc","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"317dc4d7-a6f9-4be6-ae0d-495f6070d566","keyword":"低碳贝氏体钢","originalKeyword":"低碳贝氏体钢"},{"id":"a1072429-2016-402c-ae1f-2397eed0329d","keyword":"热处理组织","originalKeyword":"热处理组织"},{"id":"cb10d41f-f992-4c68-bd35-29f9bc8707d0","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"6e2c3db0-e4c8-48f6-86c5-c9453ccc6038","keyword":"腐蚀疲劳","originalKeyword":"腐蚀疲劳"}],"language":"zh","publisherId":"clkxygy201206019","title":"新型低碳贝氏体钢的力学与腐蚀疲劳性能","volume":"20","year":"2012"},{"abstractinfo":"对LPCVD生长结构层多晶硅和掺P多晶硅的原理进行了阐述,分析了薄膜质量与各项工艺参数的关系.实验时,对各项工艺参数进行调节,在保证薄膜质量和片内一致性的同时取得最大的生长速率.生长出来的多晶硅结构层厚度达到2μm;掺P多晶硅的厚度达到1OOOhA.","authors":[{"authorName":"","id":"d90b8a1a-45be-47ff-bc2c-8d361a023551","originalAuthorName":"王立峰"},{"authorName":"贾世星","id":"dc410b16-eca5-4313-bc60-6ca388a233b7","originalAuthorName":"贾世星"},{"authorName":"陆乐","id":"531f8fae-f9e1-4cfa-8965-fd9c8864149a","originalAuthorName":"陆乐"},{"authorName":"姜理利","id":"73cc3138-4999-4795-99e9-8382f89c1e23","originalAuthorName":"姜理利"}],"doi":"10.3969/j.issn.1007-4252.2008.02.020","fpage":"372","id":"2b923cab-ec27-403d-87d5-da90fc3ba1bf","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"d4a2ce62-ce58-4334-9eef-c926d48f48bb","keyword":"LPCVD","originalKeyword":"LPCVD"},{"id":"b891bb87-f40a-46c7-8070-fb76887eaeb7","keyword":"多晶硅","originalKeyword":"多晶硅"},{"id":"106c6f0c-5959-416e-a4f2-eb8e00a0f710","keyword":"掺P多晶硅","originalKeyword":"掺P多晶硅"}],"language":"zh","publisherId":"gnclyqjxb200802020","title":"LPCVD生长结构层多晶硅和掺P多晶硅的工艺","volume":"14","year":"2008"}],"totalpage":678,"totalrecord":6774}