欢迎登录材料期刊网

材料期刊网

高级检索

针对黏弹性包围引起的复合共挤制品层厚均匀性控制的技术难题,通过数值模拟,研究了黏弹性流变性能参数对黏弹性包围的影响规律和机制.研究结果表明,黏弹性包围是由多相分层流动的第二法向应力差驱动的二次流动诱发,主要取决于成型流动过程中二次流动的方向与强度.熔体二次流动的方向与第二法向应力差的正负号有关,而熔体二次流动强度则与第二法向应力差大小成正比.黏弹性包围随着熔体松弛时间的增加而增大.消除黏弹性包围的理论前提是消除其二次流动,而通过使其流动的第二法向应力差趋于零方可消除其二次流动.第二法向应力差趋于零的前提条件是使无滑移黏着共挤多相分层剪切流动转化为气垫非黏着完全滑移共挤多相分层柱塞流动,而气辅共挤成型工艺的气垫壁面滑移是实现这一转变的有效技术.

参考文献

[1] Lee J;Allen J S;Gupta M.Observations of liquid-liquid encapsulation in coextrusion of inelastic Newtonian fluids[A].,2011:1360-1366.
[2] Dooley J;Hyun K S;Hughes K.An experimental study on the effect of polymer viscoelasticity on layer rearrangement in coextruded structures[J].Polymer Engineering & Science,199838(07):1060-1071.
[3] Huntington B A;Chabert E;Rahal S.Distortion of interfaces in a multilayer polymer coextrusion feedblock[J].International Polymer Processing,201328(03):274-280.
[4] 周国发;胡全连.聚合物多相分层充模流动成型的粘性包围形成机理数值分析[J].中国塑料,200328(08):60-65.
[5] Yue P;Zhou C;Dooley J.Elastic encapsulation in bicomponent stratified flow of viscoelastic fluids[J].Journal of Rheology,200852(04):1027-1042.
[6] Borzacchiello D .Three-dimensional numerical simulation of encapsulation in polymer coextrusion[D].Saint Etienne:Jean Monnet University,2012.
[7] Borzacchiello D;Leriche E;Blottière B.Three-dimensional finite volume computation of viscoelastic fluid encapsulation by phase-field modeling[J].Journal of Non-Newtonian Fluid Mechanics,2013200:52-64.
[8] Rajagopalan D;Arrmstrong R C;Brown R A.Finite element methods for calculation of steady viscoelastic flow using constitutive equations with a Newtonian viscosity[J].Journal of Non-Newtonian Fluid Mechanics,199036(01):159-192.
[9] Avino G D;Maffettonne P L;Hulsen M A.Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid[J].Journal of Non Newtonian Fluid Mechanics,2008150(2-3):65-79.
[10] 周国发;孙懋.聚合物全三维非稳态非等温多相分层流动成型过程的理论模型和数值模拟[J].机械工程学报,200440(09):16-24.
[11] 周文彦;周国发.聚合物多层气辅共挤精密成型机制的数值分析[J].复合材料学报,200926(03):90-98.
[12] Bhatara G .A computational study of the effects of viscoelasticity on the interfacial dynamics of free surface displacement flows[D].Stanford:Stanford University,2004.
[13] Holmes L T;Fdvero J L;Osswald T A.Modeling viscoelastic secondary flows in three-dimensional noncircular ducts[J].Polymer Engineering & Science,201252(08):1715-1723.
[14] Yue P T;Dooley J;Feng J J.A general criterion for viscoelastic secondary flow in pipes of noncircular cross section[J].Journal of Rheology,200852(01):315-332.
[15] Dehbaut B;Avalosse T;Dooley J.On the development of secondary motions in straight channels induced by the second normal stress difference:experiments and simulations[J].Journal of Non Newtonian Fluid Mechanics,199769(2-3):255-271.
[16] Xue S C;Phan Thien N;Tanner R I.Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method[J].Journal of Non-Newtonian Fluid Mechanics,199559(2-3):191-213.
[17] Hashemabadi S H;Etemad S G.Effect of rounded corners on the secondary flow of viscoelastic fluids through non-circular ducts[J].International Journal of Heat and Mass Transfer,200649(11-12):1986-1990.
[18] Everage A E.Theory of stratified hicomponent flow of polymer melts.Ⅱ.interface motion in transient flow[J].Transactions of the Society of Rheology,197519(04):509-522.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%