欢迎登录材料期刊网

材料期刊网

高级检索

在实际地下地质构造是一类多尺度的构造(如断层和褶皱等),而传统的正则化方法多基于最小光滑策略,其反演密度模型一般不易辨识以上构造。为此在分裂Bregman迭代正则化框架下引入混合正则化方法以充分利用非光滑反演和小波多尺度反演算子的特性,引入与衰减系数无关的深度加权矩阵以更好地描述深部异常;针对非光滑反演中异常幅值易于超出现实及理论异常范围,引入密度成像中的约束以确保反演具有物理意义。通过设置两类模型,对比多类正则化反演方法。反演结果显示:混合正则化反演能有效地勾勒异常边界;在处理埋深不同的异常源时,相对于聚焦反演出现的过度聚焦现象而导致的反演深度描述不准确、异常歪斜,混合正则化反演的聚焦效应相对较弱、但深度描述准确。这表明本研究反演确实可行、有效,且具有更强的适应性。

Traditional regularization inversions based on minimum smooth cannot distinguish the discontinuity of the underground subsurface (such as faults and folds, etc.). Hyper-parameter regularization method was introduced under split Bregman iterative regularization framework for taking advantage of edge-preserving inversion and wavelet multiscale operator. A new depth matrix was created based on sensitive matrix for giving an exact description of deep density abnormity. Physical bounds were imposed in each inverse iteration to obtain meaningful solutions and to avoid insignificant abnormality in non-smooth inversion. The smoothness inversion, Marquardt inversion, Occam inversion and focusing inversion with two synthetic models were compared. The inversion results show that the hyper-parameter regularization inversion can preserve edge effectively and has relatively weak focusing effect when treating the designed model with different depth sources. Meanwhile, this method can avoid inaccurate depth description and obliqueness caused by over-regularization in focusing inversion. Moreover, the inversion proposed in this study is feasible, effective, and has better adaptability.

参考文献

[1] 王化祥,唐磊,闫勇.电容层析成像图像重建的总变差正则化算法[J].仪器仪表学报,2007(11):2014-2018.
[2] 黄嵩 .电阻抗静态成像中正则化算法研究[D].重庆大学,2005.
[3] 叶益信,胡祥云,金钢燮,陈玉萍,何梅兴,周晓晨.大地电磁二维陡边界反演应用效果分析[J].地球物理学进展,2009(02):668-674.
[4] 张宏兵,尚作萍,杨长春,段秋梁.波阻抗反演正则参数估计[J].地球物理学报,2005(01):181-188.
[5] 李星秀,韦志辉.形态成分正则化约束的图像恢复方法[J].计算机工程与应用,2010(17):27-29.
[6] WAN L, ZHDANOV M. Focusing inversion of marine full-tensor gradiometry data in offshore geophysical exploration[J]. SEG Technical Program Expanded Abstracts, 2008, 27(1):751-755.,2008.
[7] PORTNIAGUINE O, ZHDANOV M. Focusing Geophysical Inversion Images[J]. Geophysics, 1999, 64(3):874-887.,1999.
[8] 张罗磊,于鹏,王家林,吴健生,陈晓,李洋.二维大地电磁尖锐边界反演研究[J].地球物理学报,2010(03):631-637.
[9] 张罗磊,于鹏,王家林,吴健生.光滑模型与尖锐边界结合的MT二维反演方法[J].地球物理学报,2009(06):1625-1632.
[10] STRONG D, CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6):S165-S187.,2003.
[11] 岳建惠 .电阻率成像反问题的混合正则化方法研究[D].大连海事大学,2012.
[12] MARTINS M, LIMA A, BARBOSA C, SILVA B. Total variation regularization for depth-to-basement estimate:Part 1-mathematical details and applications[J]. Geophysics, 2011, 76(1):I1-I12.,2011.
[13] LIMA W A, MARTINS C M, SILVA J B C, BARBOSA V C F. Total variation regularization for depth-to-basement estimate:Part 2-Physicogeologic meaning and comparisons with previous inversion methods[J]. Geophysics, 2011, 76(1):13-20.,2011.
[14] LI Y, OLDENBURG W. 3-D inversion of induced polarization data[J]. Geophysics, 2000, 65(6):1931-1945.,2000.
[15] KANE J, HERRMANN F, TOKSOZ N. Wavelet domain linear inversion with application to well logging[R]. Massachusetts:Massachusetts Institute of Technology Earth Resources Laboratory, 2001.,2001.
[16] GHOLAMI A, SIAHKOOHI H. Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints[J]. Geophysical Journal International, 2010, 180(2):871-882.,2010.
[17] THANASSOULAS C, TSELENTIS A, DIMITRIADIS K. Gravity inversion of a fault by Marquardt’s method[J]. Computers & Geosciences, 1987, 13(4):399-404.,1987.
[18] CONSTABLE C, PARKER L, CONSTABLE G. Occam’s inversion:a practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.,1987.
[19] ZHDANOV M, ELLIS R, MUKHERJEE S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 2004, 69(4):925-937.,2004.
[20] LI X, CHOUTEAU M. Three-dimensional gravity modeling in all space[J]. Surveys in Geophysics, 1998, 19(4):339-368.,1998.
[21] BREDIES K, KUNISCH K, POCK T. Total generalized variation[J]. SIAM Journal on Imaging Sciences, 2010, 3(3):492-526.,2010.
[22] ABBASBANDY S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method[J]. Applied Mathematics and Computation, 2003, 145(2):887-893.,2003.
[23] WRIGHT S J. Primal-dual interior-point methods[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1997.,1997.
[24] GOLDSTEIN T, OSHER S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2):323-343.,2009.
[25] JIA Q, ZHAO H, ZHAO W. Convergence analysis of the Bregman method for the variational model of image denoising[J]. Applied and Computational Harmonic Analysis, 2009, 27(3):367-379.,2009.
[26] WANG Y, YIN W, ZHANG Y. A fast algorithm for image deblurring with total variation regularization[R]. Texas:Rice University, 2007.,2007.
[27] DONOHO D L. Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[J]. Applied and Computational Harmonic Analysis, 1995, 2(2):101-126.,1995.
[28] KOH K, KIM J, BOYD P. An interior-point method for large-scale L1-regularized logistic regression[J]. Journal of Machine Learning Research, 2007, 8(8):1519-1555.,2007.
[29] LI Y, OLDENBURG W. 3-D inversion of gravity data[J]. Geophysics, 1998, 63(1):109-119.,1998.
[30] VASILEVSKY A, DRUZHININ A, EVANS R, MURPHY C. Feasibility of FTG reservoir monitoring[J]. SEG Technical Program Expanded Abstracts, 2003, 22(1):1450-1453.,2003.
[31] PORTNIAGUINE O, ZHDANOV M. 3-D magnetic inversion with data compression and image focusing[J]. Geophysics, 2002, 67(5):1532-1541.,2002.
[32] PILKINGTON M. 3D magnetic data-space inversion with sparseness constraints[J]. Geophysics, 2008, 74(1):L7-L15.,2008.
[33] HE B, YANG H, WANG S. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities[J]. Journal of Optimization Theory and applications, 2000, 106(2):337-356.,2000.
[34] ZHDANOV M. Geophysical inverse theory and regularization problems[M]. Boston:Elsevier Science Ltd, 2002.,2002.
[35] FLETCHER R. Practical methods of optimization[M]. New York:Wiley IEEE Press, 2013.,2013.
[36] ZHDANOV M, CAI H, Wilson G. 3-D inversion of squid magnetic tensor data[J]. Journal of Geology And Geosciences, 2012, 1(104):1-5.,2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%