采用双向球磨法,通过控制球磨时间和助磨剂的添加重,制备了具有纳米级晶粒度的Al-Mg合金,该合金很有希望应用为冲击引发含能材料中的固体燃料.结构表征表明,机械合金化处理后得到的Al0.8Mg0.2呈粒状,且其表面存在大量尺寸约为15~30 nm的纳米结构.另外,球磨后材料的晶粒度从原料Al的>100 nm降低到Al0.8Mg0.2的22.7 nm.热分析结果表明,Al0.8Mg0.2合金粒子具有很高的热反应活性.在空气中,Al0.8M90.2合金于熔化前就发生了明显的氧化还原反应,而这种固-气相反应在原料Al的DSC图谱中却没有出现,且Al0.8Mg0.2-O2体系的高温反应放热峰较Al-O2体系提前了33℃.从TG图谱中可以看出,当加热温度达到1100℃后,有69.13%的Al0.8Mg02被空气中的O2氧化,而在相同的条件下原料Al只有15.52%被氧化,可见原料Al的氧化效率远低于Al0.8Mg0.2.另外,对于Al0.8Mg0.2-Fe2O3铝热体系,其在合金熔化前也发生了显著的固-固相反应,该反应的活化能比随后的液-固相反应降低了331.664kJ.mol-1,这表明由Al-Mg合金组成的铝热剂应具有优异的点火性能.
Al-Mg alloy,as a kind of promising solid fuel applied in impact-initiated energetic materials,was fabricated by bi-direction rotation ball milling.Structure characterization reveals that the surface of Al0.8Mg0.2 granular particles exhibits a mass of nanostructure with size of 15-30 nm and the crystallite size decreases from more than 100 nm (raw Al) to 22.7 nm (Al0.8Mg0.2) after mechanical alloying.Thermal analysis indicates that Al0.8Mg0.2 presents excellent thermal reactivity.In the air,Al0.8Mg0.2 will be oxidized by O2 distinctly before melting.Moreover,the high temperature reaction of Al0.8Mg0.2-O2 is advanced by 33 ℃ compared with Al-O2 system.TG traces show that about 69.13% of Al0.8Mg0.2 are oxidized when the temperature increases to 1100℃,but the value is merely 15.52% for raw Al.Using the alloy in thermites,other than Al-Fe2O3,Al0.8Mg0.2-Fe2O3 system presents a considerable solid-solid reaction.In addition,for Al0.8Mg0.2-Fe2O3,the average active energy of solid-solid reaction is lower by 331.664 kJ·mol-1 than that of the liquid-solid reaction,which means an advantage in ignition.
参考文献
[1] | Comm Adv Energetic Mater Manufacturing Technol.Advanced Energetic Materials[M].Washington,DC:National Academies Press,2004 |
[2] | Grudza M E;Jann D;Forsyth C.[A].,2001:110. |
[3] | Dolgoborodov A Y;Streletskii A N;Makhov M N .[J].Russian Journal of Physical Chemistry B Focus on Physics,2008,1(06):606. |
[4] | Hunt E M;Malcolm S;Pantoya M L .[J].International Journal of Impact Engineering,2009,36:842. |
[5] | 黄亨建,黄辉,阳世清,杨攀,张彤,习彦,卢校军.毁伤增强型破片探索研究[J].含能材料,2007(06):566-569. |
[6] | 谢长友,蒋建伟,帅俊峰,门建兵,王树有.复合式反应破片对柴油油箱的毁伤效应试验研究[J].高压物理学报,2009(06):447-452. |
[7] | Denis S;Marc C;Christian B et al.[J].Journal of Physics and Chemistry of Solids,2010,71:100. |
[8] | Ferranti L;Thadhani N N.[A].,2006:588. |
[9] | Dolgoborodov A Y;Makhov M N;Kolbanev I V .[J].JETP Letters,2006,81(07):311. |
[10] | Baker E L;Daniels A S;Ng K W.[A].,2001:569. |
[11] | 林立;薛群基;刘惠文 .[J].无机材料学报,1996,11(04):745. |
[12] | Mei J;Halldearn R D;Xiao P .[J].Scripta Materialia,1999,41(05):541. |
[13] | Umbrajkar SM;Schoenitz M;Dreizin EL .Exothermic reactions in Al-CuO nanocomposites[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2006(1/2):34-43. |
[14] | Tillotson T M;Gash A E;Simpson R L .[J].Journal of Non-Crystalline Solids,2005,285:338. |
[15] | Grranier J J;Pantoya M L .[J].Combustion andFlame,2004,138:373. |
[16] | Plantier K B;Pantoya M L;Gash A E .[J].Combustion and Flame,2005,140:299. |
[17] | Valliappan S;Swiatkiewicz J;Puszynski J A .[J].Powder Technology,2005,156:164. |
[18] | Wang Y;Jiang W;Cheng Z P .[J].Thermochimica Acta,2007,463 |
[19] | 王毅,姜炜,程志鹏,安崇伟,宋小兰,李凤生.核壳结构Ni(Cu,Co)/Al微纳米复合粒子的制备及其与Fe2O3的热反应性能表征[J].稀有金属材料与工程,2008(07):1197-1200. |
[20] | Shoshin Y L;Trunov M A;Zhu X Y .[J].Combustion and Flame,2006,144:688. |
[21] | Shoshin Y L;Dreizin E L .[J].Combustion andFlame,2006,145:714. |
[22] | Fan RH;Lu HL;Sun KN;Wang WX;Yi XB .Kinetics of thermite reaction in Al-Fe2O3 system[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2006(2):129-131. |
[23] | Vyazovkin S;Wight CA .Kinetics in solids[J].Annual Review of Physical Chemistry,1997(0):125-149. |
[24] | Flammersheim HJ.;Opfermann JR. .Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2002(1/2):389-400. |
[25] | Starink MJ. .A NEW METHOD FOR THE DERIVATION OF ACTIVATION ENERGIES FROM EXPERIMENTS PERFORMED AT CONSTANT HEATING RATE[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,1996(1/2):97-104. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%