欢迎登录材料期刊网

材料期刊网

高级检索

固态金属中的热传递是声子和自由电子共同作用的结果.自由电子引起的热导率可以通过电导率,利用Wiedemann-Franz定律得到,声子引起的热导率目前仍然不能进行实验测量,只能借助其他方法来研究.本文采用非平衡分子动力学(NEMD)方法,用镶嵌原子方法(EAM)势能模型,模拟计算了不同厚度(1.760~10.56 nm)金属镍薄膜中由于声子-声子作用引起的热导率.然后根据纳米厚度金属薄膜的热导率借助关联式推到宏观尺度下由于声子-声子作用引起的热导率.结果表明,对于纳米厚度金属薄膜,由于声子-声子作用引起的热导率比块体金属镍的热导率小一个数量级;薄膜厚度越小,声子-声子作用引起的热导率越小;对于块体金属镍,由于声子-声子作用引起的热导率约占其总热导率的33.0%左右.

参考文献

[1] H P Myers.Introductory Solid State Physics[M].London:Taylor & Francis,1990
[2] Y S Touloukian.Thermophysical Properties of Matter,Vol 1: Thermal Conductivity of Metallic Materials and Alloys[M].New York: Plenum Press,1970
[3] M P Allen;D J Tildesley.Computer Simulation of Liquid[M].New York: Oxford University Press,1987
[4] D Frenkel;S Berend.Understanding Molecular Simulation[M].San Diego:Academic Press,1996
[5] S T Cook;P Clancy .Comparison of Semi Empirical Potential Functions for Silicon and Germanium[J].Physical Review B,1993,47(13):7686-7699.
[6] Sebastian G. Volz;Gang Chen .Molecular dynamics simulation of thermal conductivity of silicon nanowires[J].Applied physics letters,1999(14):2056-2058.
[7] 冯晓利 .纳米薄膜晶格热导率的分子动力学模拟研究[D].清华大学,2001.
[8] M S Daw;M I Baskes .Embedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals[J].Physical Review B,1984,29(12):6443-6453.
[9] T Ikeshoji;B Hafskjold .Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid-Gas Interface[J].Molecular Physics,1994,81(02):251-261.
[10] A Tenenbaum;G Ciccotti;R Gallico .Stationary Nonequilibrium States by Molecular Dynamics: Fourier's Law[J].Physical Review A,1982,25(05):2778-2787.
[11] P K Schelling;S R Phillpot;P Keblinski .Comparsion of Atomic-Level Simulation Methods for Computing Thermal Conductivity[J].Physical Review B,2002,65:144306-1-144306-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%