欢迎登录材料期刊网

材料期刊网

高级检索

采用脉冲电沉积的方法制备了Fe_(78)Si_9B_(13)/Ni层状复合材料(Ni-Fe_(78)Si_9B_(13)-Ni三层结构).用SEM和TEM对层状复合的微观组织进行观察,Ni层的晶粒尺寸平均约为50 nm,非晶层和纳米Ni层具有良好的界面结合.Fe_(78)Si_9B_(13/Ni层状复合材料的审温断裂强度达到2090 MPa,断裂伸长率达到8.5%,其伸长率远大于单相Fe_(78)Si_9B_(13)非晶带的伸长率(1.39%);在450℃高温拉伸,复合材料的延伸率达到了115.5%,远大于单相非晶带的高温延伸率(36.3%),实现了通过制备层状复合材料来提高非晶带塑性的目的.

Fe_(78)Si_9B_(13)/Ni laminated composite was prepared in the form of three- ply (Ni - Fe_(78)Si_9B_(13)- Ni) laminated structure by the pulse eleetrodeposition method. The microstructures of the laminated composite were investigated by SEM and TEM. The average grain size of Ni layers is about 50 nm. The laminated composite has a good interracial bonding between amorphous layer and nano- Ni layers. The laminated composite possesses a very high tensile strength (2090 MPa) and reasonable tensile elongation (8.5%) at room temperature, which is much larger than that of monolithic amorphous Fe_(78)Si_9 B_(13) ribbon (1.39%). The elongation of 115.5% was obtained at 450℃, which is greatly higher than that of such amorphous ribbon (36. 3%). The aim of enhancing the plasticity of amorphous ribbon by producing laminated composite is achieved.

参考文献

[1] Chen H S,Polk D E.Mechanical properties of Ni-Fe based alloy glasses[J].Journal of Non-Crystalline Solids,1974,15 (2):174-178.
[2] Inoue A,Kimura H M,Zhang T.High-strength aluminumand zirconium-based alloys containing nanoquasicrystalline particles[J].Materials Science and Engineering A,2000,294-296:727-735.
[3] Liu Y H,Wang G,Wang R J,Zhao D Q,Pan M X,Wang W H.Super plastic bulk metallic glasses at room temperature[J].Science,2007,315(5817):1385-1388.
[4] AIpas A T,Embury J D.Flow localization in thin layers of amorphous alloys in laminated composite structures[J].Scripts Metallurgica,1988,22(2):265-270.
[5] Leng Y,Courtney T H.Some tensile properties of metal-metallic glass laminates[J].Journal of Materials Science,1989,24(6):2006-2010.
[6] Nieh T G,Barhee T W,Wadsworth J.Tensile properties of a free-standing Cu/Zr nanolaminate (or compositionallymodulated thin film)[J].Scripts Materialia,1999,41(9):929-935.
[7] Park J S,Lim H K,Park E S,Shin H S,Lee W H,Kim W T,Kim D H.Fracture behavior of bulk metallic glass/metal laminate composites[J].Materials Science and Engineering A,2006,417(1/2):239-242.
[8] Li X F,Zhang K F,Wang G F.Preparation and tensile properties of amorphous Fe_(78)Si_9B_(13)/nano-Ni laminated composite[J].Materials Letters,2007,61(27):4901-4905.
[9] Chan K C,Wang C L,Zhang K F.Low temperature and high strain rate superplasticity of Ni-1mass% SiC nanocomposite[J].Materials Transactions,2004,45(8):2558-2563.
[10] 王长丽,张凯锋.SiC_P/Ni纳米复合材料的超塑性[J].复合材料学报,2005,22(4):68-74.Wang Changli,Zhang Kaifeng.Superplasticity of SiC_P/Ni nanocomposite[J].Acta Materiae Compositae Sinica,2005,22(4):68-74.
[11] 孟庆森,辛立军,陈少平,Munir Z A.电场激活燃烧合成(TiB_2)_PNi/Ni_3Al/Ni功能梯度材料[J].复合材料学报.2009,26(1):80-85.Meng Qingsen,Xin Lijun,Chen Shaoping,Munir Z A.Synthesis of(TiB_2)_PNi/Ni_3Al/Ni gradient material via fieldactivated combustion[J].Acta Materiae Compositae Sinica,2009,26(1):80-85.
[12] Bengus V Z,Tabaehnikova E D,Miskuf J,Casch K,Ocelik V,Johnson W L,Molokanov V V.New features of the low temperature ductile shear failure observed in bulk amorphous alloys[J].Journal of Materials Science,2000,36(17):4449-4457.
[13] Li X F,Zhang K F.Plastic deformation behavior of amorphous Fe_(78)Si_9B_(13) alloy at elevated temperature[J].J Non-Crystalline Solids,2008,354(10/11):1061-1065.
[14] Li X F,Zhang K F.Improved tensile ductility of amorphous Fe_(78)Si_9B_(13) alloy using electrodeposited nano-Ni layers[J].J Non-Crystalline Solids,2008,354(26):3088-3092.
[15] McFadden S X,Mishra R S,Valiev R Z,Zhilyaev A P,Mukherjee A K.Low temperature superplastieity in nanostructured nickel and metal alloys[J].Nature,1999,398 (6729):684-686.
[16] Zhang K F,Ding S,Wang G F.Different superplastic deformation behavior of nanocrystalline Ni and ZrO_2/Ni nanocomposite[J].Materials Letters,2008,62(4/5):719-722.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%