欢迎登录材料期刊网

材料期刊网

高级检索

选取玻璃组分60SiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-1Yb2O3(以mol%记,x=0,5,10,15,20,25,30)为研究对象。通过测试试样的物理性质和光谱性质,应用倒易法(reciprocity method)计算Yb3+离子的受激发射截面(σemi),并且计算了Yb3+的自发辐射几率(Arad),2F5/2能级的辐射寿命(Trad)。讨论了玻璃中Bi2O3和B2O3的组成变化对其物理性质、Yb3+离子的吸收特性、发光特性以及OH-离子对实测Yb3+荧光寿命(Tf)的影响。结果表明:Yb3+掺杂的Si2-Bi2O3-B2O3具有较好的光谱性能,是一种新型的Yb3+掺杂双包层光纤候选基质材料。

Yb3+-doped 60 SiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-1Yb2O3(x=0, 5, 10, 15, 20, 25, 30) were prepared. The physical and spectroscopic properties of Yb3+doped SiO2-
Bi2O3-B2O3 were studied. The refractive index, density of Yb3+ doped SiO2-Bi2O3-B2O3 glasses increase with the increase of Bi2O3 content, while the Tg, Tf
decrease with the increase of Bi2O3 content. The system of 60 SiO2-15Bi2O3-15B2O3-2K2O-7Na2O-1Yb2O3 glass possesses higher asymmetry. This sample exhibits higher peak absorption
cross section(σabs) and integrated absorption cross section (Σabs):1.97pm2 and 5.32×104pm3 respectively. Also this glass has higher spontaneous emission probability(Arad)
1620S-1, the τrad (calculated emission lifetime) is 0.617ms. The measured emission lifetime(τf) has strong relations with the
OH- content in glasses, as the B2O3 content increases from 0mol% to 30mol%, the τm increases from 0.39 to 0.87ms.

参考文献

[1]
[2] David C, Hoffman H. IEEE J. Quantum Electronics, 2001, 37 (2): 207--217.
[2] Dominic V, MacCormack S, Waarts R, et al. Electron. Lett., 1999, 35 (14): 1158--1160.
[3] Zenteno L. J lightwave tech., 1993, 11 (9): 1435--1446.
[4] Marvin J W, Jeanne E L, Douglas H B, et al. IEEE J Quantum Electron, 1981, QE-19 (10): 1600--1608.
[5] Xuelu Z, Hisyoshi T. Physical Review B, 1995, 52 (22): 15889--15897.
[6] Hiromichi T, Takahiro M, Kenji M. J. Am. Ceram. Soc., 1996, 79 (3): 681--687.
[7] Dai S X, Hulili, Jiang Z H, et al. Chinese Journal of Lassers, 2002, 29 (1): 82--86.
[8] Long Zh, Hefang H. J Non-Crystalline Solids, 2001, 292: 108--114.
[9] Tanabe S, Sugimoto N, Ito S, et al. Journal of Luminescence, 2000, 87-89: 670--672.
[10] Fuxi Gan. Optical glass. Science Press of China, 1982. 178--179.
[11] McCumber D E. Physical. Review., 1964, 134 (2A): A299--A306.
[12] Payne S A, Chase L L, Smith L K, et al. IEEE J. Quantum Electron, 1992, 28 (11): 2619--2630.
[13] Krupke W F. IEEE J. Quantum Electron, 1974, 80: 450--461.
[14] Xian F, Changhong Q, Fengying L, et al. J. Non-Crystalline Solids, 1999, 256\&
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%