采用ABAQUS软件对Cu-38Zn合金交叉模压形变过程进行了有限元模拟,观察并研究了Cu-38Zn合金的微观组织和硬度,探讨了模压形变的等效应变与材料组织和性能的关系.结果表明,交叉模压形变后的等效应变分布是不均匀的,造成微观组织和硬度的分布也不均匀.随着模压形变周期增大,Cu-38Zn合金的等效应变增大;晶粒尺寸减小;显微硬度增大.等效应变还影响模压形变的变形机理.
参考文献
[1] | 索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展[J].材料科学与工程学报,2004(01):132-137. |
[2] | 刘建军,王爱民,张海峰,丁炳哲,胡壮麒.高压原位合成块体纳米Mg-Zn合金[J].材料研究学报,2001(03):299-302. |
[3] | 王素梅,孙康宁,毕见强.大塑性变形法制备块体纳米材料[J].金属热处理,2003(05):5-7. |
[4] | Shin DH.;Park JJ.;Kim YS.;Park KT. .Constrained groove pressing and its application to grain refinement of aluminum[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):98-103. |
[5] | A. Krishnaiah;Uday Chakkingal;P. Venugopal .Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing[J].Scripta materialia,2005(12):1229-1233. |
[6] | A. Krishnaiah;U. Chakkingal;P. Venugopal .Applicability of the groove pressing technique for grain refinement in commercial purity copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):337-340. |
[7] | Peng K;Su L;Shaw L L et al.Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys[J].Scripta Materialia,2007,56(11):987-990. |
[8] | Khodabakhshi, F.;Kazeminezhad, M.;Kokabi, A.H. .Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(16/17):4043-4049. |
[9] | A. Shirdel .Experimental and finite element investigation of semi-constrained groove pressing process[J].Materials & design,2010(2):946-950. |
[10] | Yoon SC;Krishnaiah A;Chakkingal U;Kim HS .Severe plastic deformation and strain localization in groove pressing[J].Computational Materials Science,2008(4):641-645. |
[11] | J.W. Lee;J.J. Park .Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement[J].Journal of Materials Processing Technology,2002(0):208-213. |
[12] | Peng, K.;Mou, X.;Zeng, J.;Shaw, L.L.;Qian, K.-W. .Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing[J].Computational Materials Science,2011(4):1526-1532. |
[13] | Shaw LL;Villegas J;Huang JY;Chen S .Strengthening via deformation twinning in a nickel alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):75-83. |
[14] | Y.S. Li;N.R. Tao;K. Lu .Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J].Acta materialia,2008(2):230-241. |
[15] | A.L. Ortiz;J.W. Tian;J.C. Villegas .Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation[J].Acta materialia,2008(3):413-426. |
[16] | X. Huang;N. Hansen .Flow stress and microstructures of fine grained copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):186-190. |
[17] | Jiang L N;Da M J;Xi G F et al.Mechanical properties and microstructures of Al-Mg-Mn-Zr alloy processed by equal channel angular pressing at elevated temperature[J].Materials Characterization,2008,59(03):306-311. |
[18] | 吴世丁,安祥海,韩卫忠,屈伸,张哲峰.等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J].金属学报,2010(03):257-276. |
[19] | Huang, C.X.;Hu, W.;Yang, G.;Zhang, Z.F.;Wu, S.D.;Wang, Q.Y.;Gottstein, G..The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:638-647. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%