{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对车用聚丙烯复合材料的气味物质种类,筛选气味吸附剂,并考察吸附机理.研究发现,硅藻土、A1、A2、PY88能吸收甲醛气味;活性氧化物能消除丙酮气味;A2能吸收乙酸乙酯气味,气味分子直径与吸附剂孔径越接近吸收活性越高.","authors":[{"authorName":"杨燕","id":"06fd5825-46e5-4f40-b866-b7bad927f433","originalAuthorName":"杨燕"},{"authorName":"李永华","id":"579ec7ce-a74a-403a-b46f-4affc4a8ed89","originalAuthorName":"李永华"},{"authorName":"罗忠富","id":"015e5a13-d134-4b93-bcee-e3d566313388","originalAuthorName":"罗忠富"}],"doi":"10.3969/j.issn.1671-5381.2012.03.008","fpage":"30","id":"888d3d8d-9ea9-49fe-b609-2893520ddfe9","issue":"3","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"f4526131-b491-4d3a-ac14-1c737e0b9dc4","keyword":"气味吸附剂","originalKeyword":"气味吸附剂"},{"id":"bdc4fcce-900e-4ba6-8652-84ea249ebd85","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"a7d8f2aa-ca3f-406e-bee4-28f153e76326","keyword":"分子直径","originalKeyword":"分子直径"}],"language":"zh","publisherId":"hccllhyyy201203008","title":"聚丙烯复合材料气味吸附剂的研究","volume":"41","year":"2012"},{"abstractinfo":"本文采用非平衡分子动力学模拟方法,研究了不同直径和热流对碳纳米管(CNT)热导率的影响.研究的CNT长度均为16 nm,直径范围是0.825~1.650 nm.计算结果表明直径对该长度下CNT热导率的影响不大.其原因为碳纳米管的长度小于声子平均自由程,声子在此区间内为纯弹道式传输模式.此外,本文对热导率随热流的变化关系也进行了讨论,由结果发现热流的增大导致冷热区温差的增大,且在某临界下,温差随热流线性增大,之后陡增;相应的热导率在临界以下随热流小幅度增大,之后猝然下降.对于临界之后的区域,原因可能是非傅里叶导热引起的突变.","authors":[{"authorName":"冯雅","id":"a6eeb636-39ec-45f3-bed8-eb93da4377b7","originalAuthorName":"冯雅"},{"authorName":"祝捷","id":"83286243-c26f-4d35-872b-32eaf34582aa","originalAuthorName":"祝捷"},{"authorName":"唐大伟","id":"d416a441-e3f9-454f-b85e-1af903223863","originalAuthorName":"唐大伟"}],"doi":"","fpage":"2005","id":"c19a5eea-d099-4900-8535-f813c5358132","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"eb9ed2ec-e508-4a2e-aaf1-7877097bffd8","keyword":"单壁碳纳米管","originalKeyword":"单壁碳纳米管"},{"id":"2291ae25-18b9-4f17-b0f4-f19d27fbd5ef","keyword":"直径","originalKeyword":"直径"},{"id":"a779cb7a-d270-434c-b86b-8464d6972922","keyword":"热导率","originalKeyword":"热导率"},{"id":"a1040bbc-3d9b-4e14-aab6-a3b606cd69c8","keyword":"热流","originalKeyword":"热流"}],"language":"zh","publisherId":"gcrwlxb201410025","title":"直径及热流对碳纳米管热导率影响的分子动力学研究","volume":"35","year":"2014"},{"abstractinfo":"介绍了一种多根小直径钢筋同时矫直的高效、无划伤的矫直方法.并论述了该矫直机的矫直原理及力能参数的计算方法.","authors":[{"authorName":"刘喜平","id":"025e7d67-f343-45c3-8e90-c3fb023f9d3a","originalAuthorName":"刘喜平"},{"authorName":"许立忠","id":"181b8afd-c2a1-447e-bd18-4eb7a80b8aaa","originalAuthorName":"许立忠"},{"authorName":"程绍辉","id":"ae07ea9e-d1dc-46c9-9208-78330e560339","originalAuthorName":"程绍辉"}],"doi":"","fpage":"0","id":"54fe3992-9edd-43d4-8494-03579d0e8f13","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"32c6481a-e443-4fd6-b43c-0438eb24bc74","keyword":"小直径钢筋","originalKeyword":"小直径钢筋"},{"id":"0ca75d39-eaca-4981-b0eb-11fa117f42a4","keyword":"高效矫直","originalKeyword":"高效矫直"}],"language":"zh","publisherId":"gt199802009","title":"小直径钢筋的高效矫直","volume":"33","year":"1998"},{"abstractinfo":"通过乙酰丙酮钇与聚碳硅烷反应,得到分子量适中(Mw=2816)、GPC曲线呈双峰分布、具有优异可纺性的新型先驱体含钇聚碳硅烷,在控制纺丝温度和压力后,得到表面光滑、无裂纹、直径为5.3 μm的原纤维.讨论了原纤维直径对纤维制备工艺及性能的影响.降低纤维直径,有利于减少纤维缺陷,提高纤维强度和柔顺性.当纤维直径为6.20 μm时,抗张强度为3.52 GPa,且随直径减小,抗张强度呈线性增长趋势,为制备新型含异质元素耐超高温SiC纤维奠定了基础.","authors":[{"authorName":"杨大祥","id":"2c259476-872d-4ddd-9923-a12bc876cfa1","originalAuthorName":"杨大祥"},{"authorName":"宋永才","id":"edef0b8d-9a90-413b-9fdd-d7ed99bb07fb","originalAuthorName":"宋永才"}],"doi":"","fpage":"619","id":"f804372e-81d1-49e2-a538-6ae0c53599a8","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"751ec5f5-56c5-4e81-b257-64ccb7394cec","keyword":"碳化硅纤维","originalKeyword":"碳化硅纤维"},{"id":"a24e1489-ebfc-48b9-b821-c3364b912624","keyword":"含钇聚碳硅烷","originalKeyword":"含钇聚碳硅烷"},{"id":"5007ef76-4041-4124-8790-571fd0bc0392","keyword":"先驱体","originalKeyword":"先驱体"},{"id":"81938d84-99e3-4ff6-9252-add10458fcb9","keyword":"纺丝性","originalKeyword":"纺丝性"}],"language":"zh","publisherId":"xyjsclygc2008z1162","title":"控制含钇碳化硅纤维直径及纤维性能","volume":"37","year":"2008"},{"abstractinfo":"介绍了小直径钛合金棒材超声波探伤原理.通过实验,选择合理的探伤工艺参数,建立了小直径棒材超声波探伤方法.","authors":[{"authorName":"马小怀","id":"45c74634-1eb6-47a2-b658-accdc1085751","originalAuthorName":"马小怀"},{"authorName":"赵喜明","id":"77c9ef8c-1da3-40b4-8089-5b16c59c745b","originalAuthorName":"赵喜明"},{"authorName":"陈百锁","id":"555c4428-9953-411c-b728-39717fb72e8a","originalAuthorName":"陈百锁"},{"authorName":"吕刚","id":"fcdb5ca8-8b69-4a7c-83e9-169ea4026745","originalAuthorName":"吕刚"},{"authorName":"郭永清","id":"a7dfcdbc-733e-4df4-ba23-fd1b894193f0","originalAuthorName":"郭永清"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.215","fpage":"688","id":"c320f103-455b-4fd2-96bb-81789b78e908","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f808764f-034a-4bdf-9728-b43c3220db5c","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"9c3f3bcc-386e-46e7-a4d7-35eed2fae7d9","keyword":"杂波","originalKeyword":"杂波"},{"id":"c37ab6df-34aa-47d2-b1bd-820cc32173ea","keyword":"纵波","originalKeyword":"纵波"},{"id":"4fc15926-440c-4d68-9b5c-7b6febe69740","keyword":"横波","originalKeyword":"横波"}],"language":"zh","publisherId":"jsxb2002z1215","title":"钛合金小直径棒材超声波探伤","volume":"38","year":"2002"},{"abstractinfo":"自动直径控制(ADC)技术是直拉法晶体生长设备的一项动直径控制方法,并从理论上分析了上称重法自动直径控制(ADC)原理,着重介绍了在传统TDL-J50A及TDL-J60激光晶体炉上自主开发的上称重法自动直径控制系统的机械结构及控制系统.使用上称重法自动直径控制系统已成功地生长出φ51~76mmYAG晶体及φ51~76mm铌酸锂晶体,取得了良好的控制效果.","authors":[{"authorName":"董淑梅","id":"78f73e30-1c83-4994-bdc3-4d66176cb4de","originalAuthorName":"董淑梅"},{"authorName":"李言","id":"8db5efe8-043e-4ac5-b955-8e682d4aca95","originalAuthorName":"李言"},{"authorName":"李留臣","id":"baeba7a3-a2ce-44c2-b91b-5d85edb19291","originalAuthorName":"李留臣"},{"authorName":"王庆","id":"0f0332a7-3af3-47c0-8588-e3f209d1e8d3","originalAuthorName":"王庆"},{"authorName":"楚波","id":"742e902a-873d-48df-9aab-d605176ffb20","originalAuthorName":"楚波"}],"doi":"10.3969/j.issn.1000-985X.2005.06.033","fpage":"1141","id":"888b112e-754f-41ad-88ca-b784acf9a57e","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"36391959-cd71-49eb-9fb0-32962c5b6417","keyword":"激光晶体炉","originalKeyword":"激光晶体炉"},{"id":"dc8c6869-8582-495f-b0ea-3c6296847e47","keyword":"自动直径控制","originalKeyword":"自动直径控制"},{"id":"485d72a2-1142-4782-9bdf-c532a5483500","keyword":"上称重法","originalKeyword":"上称重法"}],"language":"zh","publisherId":"rgjtxb98200506033","title":"激光晶体炉上称重法自动直径控制(ADC)技术","volume":"34","year":"2005"},{"abstractinfo":"本文提出了测量断口分维的周长—最大直径方法,并与周长—面积方法进行了对比。当测量码尺很小时,两种方法所测分维比较接近,当测量码尺增加时,周长—面积方法所测分维有下降趋势,而周长—最大直径方法所测分维比较稳定。","authors":[{"authorName":"穆在勤","id":"df3117de-f48c-4e3e-9918-92490cfe3442","originalAuthorName":"穆在勤"},{"authorName":"龙期威","id":"83944578-9d1d-4df1-bc5a-7769854415b8","originalAuthorName":"龙期威"},{"authorName":"康雁","id":"57d5e182-a541-4bbf-876e-bca37be9dbc9","originalAuthorName":"康雁"}],"categoryName":"|","doi":"","fpage":"227","id":"00f52e9c-fe81-4d49-a07d-18ae1e7aed90","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"daced88d-727c-4db8-8b7c-534d5274a990","keyword":"小岛法","originalKeyword":"小岛法"},{"id":"b2917ea6-0569-4c60-aa95-6247adb4873a","keyword":"fractal dimension of fractured surface","originalKeyword":"fractal dimension of fractured surface"},{"id":"589766a5-6cfb-42f7-85ba-667b020df46b","keyword":"measured yardstick","originalKeyword":"measured yardstick"}],"language":"zh","publisherId":"1005-3093_1992_3_2","title":"测量断口分维的周长-最大直径方法","volume":"6","year":"1992"},{"abstractinfo":"研究以实验为基础,利用回归分析法得出了喷嘴直径与喷砂清理效率之间的函数关系,为提高喷砂清理效率提供了理论指导.","authors":[{"authorName":"李钦奉","id":"0399327b-bdf8-41b5-993d-f64aa2f3ca53","originalAuthorName":"李钦奉"},{"authorName":"王贵成","id":"40e7c448-7b56-4619-a790-8ae47cd1ac25","originalAuthorName":"王贵成"}],"doi":"10.3969/j.issn.1001-1560.2001.12.027","fpage":"51","id":"4d6a066d-218e-40f6-a86a-656109fc4538","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"b3c6921f-4c46-4271-bef0-b3dbe35fbae8","keyword":"喷嘴直径","originalKeyword":"喷嘴直径"},{"id":"c97af343-4103-4390-80a7-bbcc3f0816cf","keyword":"喷砂清理","originalKeyword":"喷砂清理"},{"id":"21473fa6-bc93-4970-9264-4cd66ef467ff","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"clbh200112027","title":"喷嘴直径对喷砂清理效率的影响","volume":"34","year":"2001"},{"abstractinfo":"区别于小直径管焊缝射线检测通常采用椭圆成像的方法,超小直径管焊缝检测经常会用到垂直透照法.本文结合超小直径管的具体情况,通过透照厚度比和成像位移分析,对椭圆成像和垂直透照两种透照技术的选用进行了论述.并针对垂直双壁单影透照法射线影像重叠的特点,对超小直径管反面余高(焊漏)的影像特征进行了重点分析,提出了反面余高尺寸测定的两种可行方法.此外通过对垂直透照法有效透照次数的计算验证,得出了简化透照法能够满足实际工程需要的结论.","authors":[{"authorName":"蔡闰生","id":"2af77a18-5857-4598-ae82-bc83b647941f","originalAuthorName":"蔡闰生"},{"authorName":"金虎","id":"0c5f1e46-5a6c-4682-b333-f000d06f9e1a","originalAuthorName":"金虎"},{"authorName":"任华友","id":"86584620-7a81-4288-8bfb-8da4e49a6619","originalAuthorName":"任华友"},{"authorName":"袁生平","id":"3804ab80-4881-48aa-8422-ceec68c16bfc","originalAuthorName":"袁生平"}],"doi":"","fpage":"54","id":"eec210e6-30a8-42d8-a3d0-be851e2b9c97","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"f8933170-5675-4387-868f-c65f2deb55bd","keyword":"小直径管","originalKeyword":"小直径管"},{"id":"70eb8865-637f-4569-a0f5-2f8071af3f5c","keyword":"X射线","originalKeyword":"X射线"},{"id":"3c880c05-24e2-4e90-a4f2-f4414fe44cbf","keyword":"照相技术","originalKeyword":"照相技术"},{"id":"5e62bde3-190c-4114-90c4-108ebcd9849f","keyword":"反面余高","originalKeyword":"反面余高"}],"language":"zh","publisherId":"yhclgy201305012","title":"超小直径管X射线照相检测与评判","volume":"43","year":"2013"},{"abstractinfo":"根据气粉流的连续方程、动量方程和能量方程等基本关系式,建立了描述等直径喷嘴中气粉流行为的微分方程组.采用马赫数检验法确定等直径管中气粉流的临界管长,并通过数值计算结果讨论各种因素对气粉流壅塞现象的影响.","authors":[{"authorName":"彭一川","id":"433beb30-b429-49a7-8a8c-4b83f0bae0a9","originalAuthorName":"彭一川"},{"authorName":"廖欣","id":"c788a4b8-5d97-4866-9d4f-8ec3bebbeeb0","originalAuthorName":"廖欣"},{"authorName":"蒲正华","id":"27b1b8bf-9dac-46a3-ad83-10bab16446ba","originalAuthorName":"蒲正华"},{"authorName":"黄休发","id":"0b4c3a90-1d07-4c6c-ad1e-469be2c4c1f2","originalAuthorName":"黄休发"}],"doi":"10.3969/j.issn.1001-1447.2000.01.011","fpage":"40","id":"2862d1af-c68f-41f1-9e2e-cf556827c185","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"1ab280aa-db92-4560-b3d8-aa66f4484e4f","keyword":"等直径管","originalKeyword":"等直径管"},{"id":"e640ed86-3dee-4c24-9240-4461aaa262d1","keyword":"气粉流","originalKeyword":"气粉流"},{"id":"0b015ad1-f905-487d-ba28-f747d10ed6e5","keyword":"壅塞现象","originalKeyword":"壅塞现象"}],"language":"zh","publisherId":"gtyj200001011","title":"等直径管中气粉流壅塞现象的研究","volume":"","year":"2000"}],"totalpage":1642,"totalrecord":16413}