欢迎登录材料期刊网

材料期刊网

高级检索

以磷片石墨Cfg,SiC,B4C和TiO2为原料,热压合成C-SiC-B4C-TiB2复合材料,研究不同Cfg含量和热压温度对复合材料显微组织和力学性能的影响规律.结果表明:烧结过程中TiO2与B4C反应原位生成TiB2;复合材料的密度和抗弯强度随着热压温度的升高而增加,却随着Cfg含量的增加而降低,随着热压温度的升高和Cfg含量的增加,复合材料的断裂韧性则提高;在2 000 ℃,25 MPa下热压时,Cfg含量为20%(质量分数)的复合材料其体积密度为2.81 g/cm3,抗弯强度为236.7 MPa,断裂韧性为5.3 Mpa·m1/2,Cfg含量为65%含量的复合材料的体积密度为2.42 g/cm3、抗弯强度为103.6 MPa、断裂韧性为8.1 Mpa·m1/2;复合材料的致密化程度和陶瓷晶粒随热压温度的升高而增大,复合材料中Cfg层状分布结构随Cfg含量的增加更加明显;复合材料中Cfg弱界面分层诱导韧化作用及第二相TiB2和陶瓷基体热膨胀系数不匹配所产生的残余应力导致的裂纹偏转作用是复合材料断裂韧性提高的主要原因.

参考文献

[1] INGAKI M .Research and development on carbon/ceramic composites in Japan[J].CARBON,1991,29(03):287-290.
[2] KOBAYASHI K;MAEDA K;UCHIYAMA Y .High temperature oxidation of carbon/SiC/B4C composite in different atmospheres[J].Tanso,1992,151:20-26.
[3] 郭全贵,宋进仁,刘朗.B4C-SiC/C复合材料高温自愈合抗氧化性能研究Ⅱ复合材料结构变化与其自愈合抗氧化相关性研究[J].新型炭材料,1998(02):5.
[4] Zhang WG.;Sano H.;Uchiyama Y.;Kobayashi K.;Zhou LJ.;Shen ZH.;Zhou BL.;Cheng HM. .The effects of nanoparticulate SiC upon the oxidation behavior of C-SiC-B4C composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(11):1591-1595.
[5] FAN Zhuang-jun;SONGA Y Z;LIB J G .Oxidation behavior of fine-grained SiC-B4C/C composites up to 1 400 ℃[J].CARBON,2003,41:429-436.
[6] ZHANG W;CHENG H .Oxidation kinetics and mechanisms of ceramic-carbon composite I:Modeling for the nonreactive ceramic layer type[J].CARBON,1998,36:991-995.
[7] 范壮军,刘朗,李建刚.细颗粒B4C-SiC/C复合材料的抗氧化性能[J].材料研究学报,2003(03):287-292.
[8] FAN Z J;SONG Y Z;LI J G et al.Oxidation behavior of fine-grained SiC-B4C/C composites up to 1 400 ℃[J].CARBON,2003,41:429-436.
[9] Wu Lijun;Huang Qizhong;Yang Qiaoqin;Zhao Lihu;Xu Zhongyu .Effect of sintering temperature on structure of C-B4C-SiC composites with silicon additive[J].Scripta materialia,1996(1):123-127.
[10] Zhang WG.;Sano H.;Uchiyama Y.;Kobayashi K.;Zhou LJ.;Shen ZH.;Zhou BL.;Cheng HM. .The effects of nanoparticulate SiC upon the oxidation behavior of C-SiC-B4C composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(11):1591-1595.
[11] 周声劢,刘其城,夏金童.无粘结剂碳/陶复合材料的制备及抗氧化性能的研究[J].湖南大学学报(自然科学版),2001(05):29-33.
[12] 胡晓凯,周声劢,夏金童.无粘结剂C-SiC-B4C系碳/陶复合材料的制备及高温抗氧化性质的研究[J].湘潭大学自然科学学报,2003(01):39-42.
[13] 黄启忠;杨巧勤;黄伯云;吕海波 .原料种类对复合材料性能的影响[J].中南大学学报,1995,26(04):233-226.
[14] 黄启忠.TiC对C-B4C-SiC复合材料显微结构与性能的影响[J].炭素,1995(02):9-12.
[15] 黄启忠.烧结温度对C-B4C-SiC复合材料显微结构与性能的影响[J].炭素,1995(04):17-20.
[16] 喻亮,茹红强,薛向欣,左良.C鳞片-SiC-B4C复合材料板烧蚀数值模拟[J].东北大学学报(自然科学版),2006(11):1240-1243.
[17] Valentine PG.;Winter J.;Linke J.;Kaae JL.;Schuster A. Bolt H.;Duwe R.;Wallura E.;Philipps V.;Trester PW. .B4C-SIC REACTION-SINTERED COATINGS ON GRAPHITE FOR PLASMA FACING COMPONENTS[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1995(0):756-761.
[18] Kobayashi K.;Sano H.;Uchiyama Y.;Maeda K. .FORMATION AND OXIDATION RESISTANCE OF THE COATING FORMED ON CARBON MATERIAL COMPOSED OF B4C-SIC POWDERS[J].Carbon: An International Journal Sponsored by the American Carbon Society,1995(4):397-403.
[19] YAMAUCHI Y;HIROHATA Y;HINO T .Hydrogen and helium retention properties of B4C and SiC converted graphites[J].Fusion Engineering and Design,1998,39-404:27-432.
[20] ALIMOV V K;ZALAVUTDINOV R K .Evolution of CD4 from bulk boronized graphite and B4C and boron-doped graphite[J].Journal of Nuclear Materials,1994,212-215:1461-1466.
[21] 喻亮;茹红强;蔡继东;左良 .热压烧结C-SiC-B4C复合材料组织与性能(I)[J].东北大学学报,2006,25(11):27-30.
[22] HAYASHI S;KOBAYASHI Y;SAITO H .B4C-TiB2 composites pressureless-sintered using Ni and C as densification aids[J].Journal of the Ceramic Society of Japan,1993,101(02):154-158.
[23] 王克仁;罗力更;姚衡.工程材料的变形与断裂力学[M].北京:机械工业出版社,1982:364-418.
[24] 刘荣,茹红强,赵媛,唐获.ZrB2颗粒增韧B4C陶瓷的原位合成[J].材料研究学报,2006(06):611-616.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%