在温度为525 ℃、应变速率为0.0008~0.032 s-1 条件下,采用等应变速率拉伸法研究了AA5083合金的流变行为,探讨了n、m值的测量方法,并建立了修正的粘塑性本构模型.结果表明:AA5083合金在该条件下流变应力随应变速率的升高而增加, 表现应变速率硬化特征;各变形曲线呈现应变硬化、稳态变形及应变软化三阶段.应变硬化指数n随应变速率减小而增加,应变速率敏感性指数m随应变增加而减小,均为动态晶粒长大所致;合金应变软化表现为动态再结晶特征.模型预测值与实验值吻合良好.
参考文献
[1] | Benedyk et al.[J].Light Metals Age,2004,62(08):36. |
[2] | Barnes A J .[J].Materials Science Forum,1997,304-306:785. |
[3] | Hefti L D .[J].Journal of Materials Engineering and Performance,2004,13(06):678. |
[4] | Verma R et al.[J].Journal of Materials Engineering and Performance,2007,16(02):185. |
[5] | Martin C F et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,297(1-2):212. |
[6] | Kulas M A et al.[J].Materials Science Forum,2007,551-552:129. |
[7] | 时张杰 et al.[J].Machine Building Automation(机械制造与自动化),2007,36(06):25. |
[8] | Krajewski P E et al.[J].Journal of Materials Engineering and Performance,2004,13(06):700. |
[9] | Luoa Y et al.[J].International Journal of Machine Tools and Manufacture,2008,48:1509. |
[10] | 邓学峰 et al.[J].Journal of Plasticity Engineering(塑性工程学报),2006,13(03):83. |
[11] | Zhou M et al.[J].Mechanics of Materials,1998,27(02):63. |
[12] | 王孟君,任杰,黄电源,姜海涛.汽车用5182铝合金板材的温拉伸流变行为[J].中国有色金属学报,2008(11):1958-1963. |
[13] | Xu Xuefeng et al.[J].Materials Science Forum,2007,551-552:281. |
[14] | 童国权 et al.[J].Chinese Journal of Materials Research(材料研究学报),1998,12(02):144. |
[15] | 童国权.Microstructure and Superplastic Deformation Characteristics of 3Y-TZP(3Y-TZP 陶瓷超塑性变形特性及显微组织结构研究)[M].南京:南京航空航天大学,1996:29. |
[16] | 宋玉泉,管志平,马品奎,宋家旺.拉伸变形应变硬化指数的理论和实验规范[J].金属学报,2006(07):673-680. |
[17] | Mcqueen H J et al.[J].Canadian Metallurgical Quarterly,2000,39(04):483. |
[18] | 杨军军 et al.[J].Aluminium Fabrication(铝加工),2001,23(04):34. |
[19] | Hamilton C H et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,10(06):699. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%