采用激光加工技术构建微米级的表面微结构,将SiO2纳米粒子均匀分散在低表面能含氟聚合物中形成聚合物基纳米复合材料,并将其涂覆在表面微结构上构建微纳双层仿生结构,获得了超疏水船体钢板表面.用光学显微镜、扫描电镜和X射线光电子能谱等手段表征其形貌和表面元素,用接触角测量仪测量了表面接触角.结果表明,与具有单一的微米或纳米结构的表面相比较,具有微纳双层结构的表面可以获得更大的接触角.接触角与纳米SiO2浓度有关,浓度越高,接触角越大.当SiO2的浓度为0.167 mol/L,接触角可达168.2°.单一微米结构和纳米结构的表面符合Wenzel模型,即使将表面竖直放置,液滴仍不会滚落.微纳双层结构的表面符合Cassie模型,具有大的接触角和小的滚动角,且滚动角随SiO2浓度的增大而减小.当SiO2的浓度为0.167 mol/L,滚动角仅为0.29°.
参考文献
[1] | Y.P.Papastamatiou,C.G.Meyer,Sharks as cleaners for reef fish,Coral Reefs.,26,225(2007) |
[2] | M.Scholle,A.Rund,N.Aksel,Drag reduction and improvement of material transport in creeping films,Arch Appl.Mech.,75,93(2006) |
[3] | Y.Zhang,X.Yu,Q.Zhou,F.Chen,K.Li,Fabrication of super-hydrophobic copper surface with ultra-low water roll angle,Appl.Surf.Sci.,256(6),1883(2010) |
[4] | X.Zhang,F.Shi,X.Yu,H.Liu,Y.Fu,Z.Q.Wang,L.Jiang,X.Y.Li,Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface,J.Am.Chem.Soc.,126,3064(2004) |
[5] | N.Zhao,F.Shi,Z.Q.Wang,X.Zhang,Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces,Langmuir,21,4713(2005) |
[6] | X.Yu,Z.Q.Wang,Y.G.Jiang,F.Shi,X.Zhang,Reversible pH-responsive surface:from superhydrophobicity to superhydrophilicity,Adv.Mater,17,1289(2005) |
[7] | F.Shi,Z.Q.Wang,X.Zhang,Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders,Adv.Mater,17,1005(2005) |
[8] | WANG Jingming,WANG Chun,WANG Mingchao,JIANG Lei,Effects of the distribution of micropapillae with nanofolds on the adhesive property of artificial red rose petals,CHEMICAL JOURNAL OF CHINESE UNIVERSITIES,32(8),1807(201l)(王景明,王春,王明超,江雷,人造玫瑰花花瓣的微结构分布与水滴黏附性质的关系,高等学校化学学报,32(8),1807(2011)) |
[9] | M.H.Jin,X.J.Feng,J.M.Xi,J.Zhai,K.Cho,L.Feng,L.Jiang,Super-hydrophobic PDMS surface with ultra-low adhesive force,Macromol Rapid Commun,26,1805(2005) |
[10] | C.T.Hsieh,J.M.Chen,R.R.Kuo,T.S.Lin,C.F.Wu,Influence of surface roughness on water-and oil-repellent surface coated with nanoparticles,Applied Surface Science,240,318(2005) |
[11] | SU Changhong,XIAO Yi,CUI Zhe,LIU Chengguo,WANG Qingjun,CHEN Qingmin,A simple way to fabricate multi-dimension bionic super-hydrophobic surface,Chinese Journal of Inorganic Chemistry,22(5),785(2006)(粟常红,肖怡,崔喆,刘承果,王庆军,陈庆民,一种多尺度仿生超疏水表面制备,无机化学学报,22(5),785(2006)) |
[12] | JI Jingou,YANG Bin,XIA Zhining,JIANG Xingliang,SHU Lichun,Preparation of super-hydrophobic and self-cleaning coating of nano-composite fluoropolyacrylate,Chinese Journal of Materials Research,25(4),422(2011)(季金苟,杨斌,夏之宁,蒋兴良,舒立春,纳米复合氟改性丙烯酸树脂超疏水自清洁涂层的制备,材料研究学报,25(4),422(2011)) |
[13] | HU Xiaojuan,LIU Lan,LUO Yuanfang,JIA Demin,CHENG Liang,HU Shengzhe,Preparation of superhydrophobic PMHS-SiO2coatings by sol-gel method,Chinese Journal of Materials Research,24(3),266(2010)(胡小娟,刘岚,罗远芳,贾德民,程梁,胡盛哲,溶胶-凝胶法制备超疏水PMHS-SiO2涂膜,材科研究学报,24(3),266(2010)) |
[14] | R.Fürstner,W.Barthlott,C.Neinhuis,P.Walzel,Wetting and self-cleaning properties of artificial superhydrophobic surfaces,Langrnuir,21,956(2005) |
[15] | H.Juvaste,E.I.Iiskola,T.T.Pakkanen,Aminosilane as a coupling agent for cyclopentadienyl ligands on silica,Journal of Organometallic Chemistry,587(1),38(1999) |
[16] | R.N.Wenzel,Resistance of solid surfaces to wetting by water,Ind.Eng.Chem.,28,988(1936) |
[17] | A.B.D.Cassie,S.Baxter,Wettability of porous surfaces,Trans.Faraday Soc.,40,546(1944) |
[18] | H.Murase,K.Nanishi,H.Kogure,T.Fujibayashi,K.Tamura,N.Haruta,Interactions between heterogeneous surfaces of polymers and water,Appl.Polym.Sci.,54(13),2051(1994) |
[19] | Z.Yoshimitsu,A.Nakajima,T.Watanabe,K.Hashimoto,Effects of surface structure on the hydrophobicity and sliding behavior of water droplets,Langmuir,18(15),5818(2002) |
[20] | YANG Changwei,HAO Pengfei,HE Feng,Effect of upper contact line on sliding behavior of water droplet on superhydrophobic surface,Chin.Sci.Bulletin,54(4),436(2009)(杨常卫,郝鹏飞,何枫,微结构超疏水表面液滴的运动性质,科学通报,54(4),436(2009)) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%