为选择适合于5052铝合金回弹仿真的材料模型,对LS?Dyna软件中4个材料模型MAT_36、MAT_122、MAT_125和MAT_226所采用的屈服准则和硬化模型进行了分析,采用这4个模型对5052铝板U形件的回弹进行了仿真,对回弹过程中圆角区的应力释放进行了讨论。同时,进行了U形件的回弹试验,并与仿真结果进行了比较。结果表明,4个材料模型中,基于Yoshida?Uemori随动硬化模型和Barlat’89屈服准则的材料模型MAT_226具有最好的回弹预测精度,由各向同性硬化模型和Hill’48屈服准则组合的材料模型MAT_122的回弹预测结果与试验结果的偏差最大。硬化模型对回弹预测精度的影响大于屈服准则的影响。
To select a suitable material model for springback simulation of the 5052 aluminum sheet, the yielding criteria and hardening models used in the four material models,MAT_36, MAT_122, MAT_125 and MAT_226 adopted by LSDYNA software were analyzed. These four material models were used to simulate the springback of a 5052 aluminum U?shaped part. The stress relief during springback at the corners and walls of U?shaped part was discussed. Springback experiments of the U?shaped part were performed, and the obtained data were compared tothe simulation ones. The results indicated that among the four material models, the model, MAT_226, that includes the Balart89 criterion and Yoshida?Uemori kinematic hardening model has the highest precision of springback simulation.TheMAT_122modelconsisting ofthe isotropic hardening and Hill’48 yielding criterion gives the lowest precision in springback simulation.Hardening model has greater influence on the precision of springback simulation than the yielding criterion has.
参考文献
[1] | Hong Seok Kim;Muammer Koc .Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions[J].Journal of Materials Processing Technology,2008(1/3):370-383. |
[2] | 陈超,桂枫,陈明安.铝合金板材弯曲成形性能[J].锻压技术,2013(01):25-30. |
[3] | 王强.铝合金车身覆盖件冲压成形回弹仿真方法研究[J].农业装备与车辆工程,2012(04):50-53. |
[4] | 肖煜中,陈军.金属板料冲压数值模拟中的宏观硬化模型研究现状[J].塑性工程学报,2009(04):51-58. |
[5] | M. G.Lee;C.Kim;E. J. Pavlina .Advances in Sheet Forming-Materials Modeling, Numerical Simulation, and Press Technologies[J].Journal of manufacturing science and engineering,2011(6):061001-1-061001-12. |
[6] | Mohsen Safaei;Shun-lai Zang;Myoung-Gyu Lee;Wim De Waele.Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and non-associated flow rule approach[J].International Journal of Mechanical Sciences,2013:53-68. |
[7] | HILL R .A theory of the yielding and plastic flow of anisotropic metals[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1948,193:281-297. |
[8] | HILL R .Constitutive modeling of orthotropic plasticity in sheet metals[J].Journal of the Mechanics and Physics of Solids,1989,38:405-417. |
[9] | BARLAT F;LIAN J .Plastic behavior and stretchabili-ty of sheet metals.Part I:a yield function for orthotro-pic sheet under plane stress condition[J].Internation-al Journal of Plasticity,1989,5:51-66. |
[10] | BARLAT F;LEGE D J;BREM J C .A six-component yield function for anisotropic materials[J].International Journal of Plasticity,1991,7:693-712. |
[11] | Barlat F.;Brem JC.;Yoon JW.;Chung K.;Dick RE.;Lege DJ.;Pourgoghrat F.;Choi SH.;Chu E. .Plane stress yield function for aluminum alloy sheets - part 1: theory[J].International Journal of Plasticity,2003(9):1297-1319. |
[12] | Cao, J;Lee, W;Cheng, HS;Seniw, M;Wang, HP;Chung, K .Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals[J].International Journal of Plasticity,2009(5):942-972. |
[13] | NOBUTADA O;WANG J D .On modeling of kinematic hardening for ratcheting behavior[J].Nuclear Engineering and Design,1995,153:205-212. |
[14] | P.-A. Eggertsen;K. Mattiasson .On constitutive modeling for springback analysis[J].International Journal of Mechanical Sciences,2010(6):804-818. |
[15] | Wagoner, R.H.;Lim, H.;Lee, M.-G..Advanced issues in springback (Conference Paper)[J].International Journal of Plasticity,2013:3-20. |
[16] | Y.X. Zhu;Y.L. Liu;H. Yang;H.P. Li .Development and application of the material constitutive model in springback prediction of cold-bending[J].Materials & design,2012(Dec.):245-258. |
[17] | Hallquist J O.LS-DYNA keyword user′s manual[M].California:Livermore Software Technology Corpora-tion,2007:970. |
[18] | Gronostajski Z.; .The constitutive equations for FEM analysis[J].Journal of Materials Processing Technology,2000(1/3):40-44. |
[19] | Yoshida F.;Uemori T. .A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation[J].International Journal of Plasticity,2002(5-6):661-686. |
[20] | F. Yoshida;T. Uemori .A model of large-strain cyclic plasticity and its application to springback simulation[J].International Journal of Mechanical Sciences,2003(10):1687-1702. |
[21] | Chaboche JL. .THERMODYNAMIC FORMULATION OF CONSTITUTIVE EQUATIONS AND APPLICATION TO THE VISCOPLASTICITY AND VISCOELASTICITY OF METALS AND POLYMERS[J].International Journal of Solids and Structures,1997(18):2239-2254. |
[22] | Chaboche JL .A review of some plasticity and viscoplasticity constitutive theories[J].International Journal of Plasticity,2008(10):1642-1693. |
[23] | Chaboche, J.-L.;Gaubert, A.;Kanouté, P.;Longuet, A.;Azzouz, F.;Mazière, M..Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging[J].International Journal of Plasticity,2013:1-22. |
[24] | CHUNG K;KUWABARA T;VERMA R.Numisheet 2011 Benchmark 4:Pre-strain effect on spring-back of 2D draw bending[A].New York:AIP Publishing,2011:171-175. |
[25] | 庄京彪,刘迪辉,李光耀.基于包辛格效应的回弹仿真分析[J].机械工程学报,2013(22):84-90. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%