欢迎登录材料期刊网

材料期刊网

高级检索

综合运用 XRD、SEM、TEM、EDS和介电测量等方法,考察了一步预煅烧法和二步预煅烧法等前驱体制备途径对Pb(Fe1/2Nb1/2)O(PFN)-Pb(Mg1/3Nb2/3)O(PMN)二元系铁电陶瓷显微结构和介电性能的影响.研究结果表明,对(1-)PFN-PMN二元系而言,在所考查的组成范围内(=0~0.5);其居里温度与PMN的含量近似成线性关系,且随X的增加,居里温度向低温方向移动.峰值介电常数随X的增加而降低.(预)煅烧和烧结条件对显微结构和介电性能都有不可忽视的影响.对用一步预煅烧法和二步预煅烧法得到的样品的介电性能和其他性能进行了比较,并对其差异产生的可能机制进行了讨论.

The binary system of Pb(Fe1/2Nb1/2)O3(PFN)--Pb(Mg1/3Nb2/3)O3(PMN) was investigated into the effects of different precursor process routes on the
microstructrure and dielectric properties by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy
dispersion spetrometer (EDS) and dielectric measurements. It is concluded that for the binary system (1-x)PFN-xPMN, the change of Curie temperature is
approximately linear with respect to PMN content in the range of interest (x=0-0.5). With the increase of x, the Curie points shift to lower temperatures. And the
dielectric maximum (εmax) decreases with increasing x. Both calcining and sintering conditions have non-negligible influence on microstructure
and dielectric properties. Dielectric and other properties were compared for samples prepared by single-step and two-step precalcination route and the possible mechanisms
leading to the differences were discussed.

参考文献

[1] 李龙土(LI Long-Tu). 硅酸盐学报 (Journal of the Chinese Ceramic Society), 1992, 20 (5): 476--483.
[2] Shrout T R , Halliyal A. Am. Ceram. Soc. Bull., 1987, 66 (4): 704--711.
[3] Halliyal A, Kumar U, Newnham R E, et al. Am. Ceram. Soc. Bull., 1987, 66 (4): 671--676.
[4] Smolenskii G A, Agranovskaya A I. Sov. Phys. -Solid State, 1959, 1: 1429--1437.
[5] Swartz S L, Shrout T R. Mater. Res. Bull., 1982, 17 (10): 1245--1250.
[6] Gupta S M, Kulkarni A R. J. Mater. Res., 1995, 10 (4): 953--961.
[7] Sekar M M A, Halliyal A, Patil K C. J. Mater. Res., 1996, 11 (5): 1210--1218.
[8] Chen J, Harmer M P. J. Am. Ceram. Soc., 1990, 73 (1): 68--73.
[9] Papet P, Dougherty J P, Shrout T R. J. Maer. Res., 1990, 5 (12): 2902--2909.
[10] Orita M, Satoh H, Aizawa K, et al. Jpn. J. Appl. Phys., 1992, 31 (9B): 3261--3264.
[11] Koyuncu M, Pilgrim S M. J. Am. Ceram. Soc., 1999, 82 (11): 3075--3079.
[12] Ananta S, Brydson R, Thomas N W. J. Euro. Ceram. Soc., 1999, 19: 355--362.
[13] Ananta S, Thomas N W. J. Euro. Ceram. Soc., 1999, 19: 629--635.
[14] Ananta S, Thomas N W. J. Euro. Ceram. Soc., 1999, 19: 155--163.
[15] Ananta S, Thomas N W. J. Euro. Ceram. Soc., 1999, 19: 2917--2930.
[16] Rao R M V, Halliyal A, Umarji A M. J. Am. Ceram. Soc., 1996, 79 (1): 257--260.
[17] Kim S--J, Hong Y S, Park H--B. J. Mater. Sci. Lett., 1996, 15: 1443--1446.
[18] Fu S L, Chen G--F. Ferroelectrics, 1988, 82: 119--126.
[19] Yokosuka M. Jpn. J. Appl. Phys., 1993, 32 (3A): 1142--1146.
[20] Mohan D, Prasad R, Banerjee S. J. Mater. Sci. Lett., 1996, 15: 2149--2152.
[21] Ananta S, Thomas N W. J. Euro. Ceram. Soc., 1999, 19: 1873--1881.
[22] Johansson K E. Palm T, Werner P--E. J. Phys. E: Sci. Instrum., 1980, 13: 1289--1291.
[23] Werner P--E. Arkiv fur kemi., 1969, 31: 513.
[24] Blackman L C F. J. Am. Ceram. Soc., 1959, 42 (3): 143--145.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%