包金山金矿位于湖南省双峰金矿带上,根据矿床地质特征将成矿作用划分为变质热液期、岩浆热液期和热液叠加期等3个成矿期,并将岩浆热液期细分为乳白色石英脉阶段(A)、烟灰色石英脉阶段(B)和碳酸盐?石英细脉阶段(C)3个矿化阶段。通过流体包裹体显微测温、包裹体成分分析及氢氧同位素组成分析来研究矿床成矿流体特征,并分析矿床成因。包裹体岩相学研究发现,A、B阶段的石英中发育3类包裹体:气液两相包裹体(I型)、水溶液?CO2包裹体(II型)和纯CO2包裹体(III型)。A阶段发育大量I型包裹体和极少量II型包裹体,均一温度集中于260~380℃,盐度为3.12%~15.42%;B阶段发育I型包裹体,II型及III型包裹体明显增多,均一温度集中于250~370℃,盐度为2.31%~12.29%。群体包裹体气相成分以H2O和CO2为主,还含有N2、CH4、H2、CO等,液相成分主要为Ca2+、Na+、Mg2+、SO42?、Cl?和NO3?。矿床主成矿期流体属低盐度、中高温、富CO2的Ca2+(Na+、Mg2+)-SO42?(Cl?、NO3?)-H2O-CO2体系,估算成矿压力为70~113 MPa,估算最大成矿深度为4.2km。氢氧同位素分析表明主成矿阶段的流体来源于原生岩浆水。矿床成因类型为变质热液叠加中温岩浆热液充填交代型矿床。
The Baojinshan gold deposit is located in Shuangfeng gold metallogenic belt of Hunan Province. According to geological characteristics of the deposit, three mineralization episodes were identified: metamorphic hydrothermal episode, magmatic hydrothermal episode and hydrothermal superposition episode, and 3 stages were subdivided from magmatic hydrothermal episode, namely milky quartz vein stage (A), smoky quartz vein stage (B) and carbonate-quartz veinlet stage (C). The characteristics of ore-forming fluid and ore genesis were discussed by using the fluid inclusion micro-thermometry, group inclusion composition analysis and H?O isotope analysis. Based on fluid inclusion petrography, three types of fluid inclusions are developed in stages A and B: aqueous inclusion (type I), CO2-aqueous inclusion (type II) and pure CO2 inclusion (type III). Mainly type I and few type II inclusions are present in stage A, having homogenization temperatures at 260?380 ℃, and the salinities ranging from 3.12% to 15.42%. In addition to development of type I inclusions, type II and III inclusions increase significantly in stage B, with homogenization temperatures ranging from 250℃to 370℃, salinities are in the range of 2.31%?12.29%. High density of H2O and CO2, followed by N2, CH4, H2 and CO were found as gas compositions in the inclusions. Liquid phase of fluid mainly comprise Ca2+, Na+, Mg2+, SO42?, Cl? and NO3?. Ore-forming fluid of main mineralization episode in Baojinshan gold deposit belongs to low salinity, medium-high temperature, CO2-rich Ca2+(Na+, Mg2+)-SO42?(Cl?, NO3?)-H2O-CO2 system. The calculated metallogenic pressures are in the range of 70?113 MPa, and the maximum estimated mineralization depth is 4.2 km. The result of hydrogen and oxygen isotope analysis shows that ore-forming fluid of main mineralization stage is mainly derived from magmatic fluid. Baojinshan deposit belongs to medium-temperature magmatic hydrothermal filling and metasomatic deposit along with superimposition of metamorphic hydrothermal.
参考文献
[1] | 周兴良;毛卫红;胡世明.湖南双峰金矿带成矿地质特征及控矿因素[J].广西质量监督导报,2008(7):190-191,196. |
[2] | 曾认宇;赖健清;张利军;鞠培姣.湘中紫云山岩体暗色微粒包体的成因:岩相学、全岩及矿物地球化学证据[J].地球科学-中国地质大学学报,2016(9):1461-1478. |
[3] | 钟世华;申萍;潘鸿迪;郑国平;鄢瑜宏;李晶.新疆西准噶尔苏云河钼矿床成矿流体和成矿时代[J].岩石学报,2015(2):449-464. |
[4] | Steele-MacInnis, M.;Bodnar, R.J.;Naden, J..Numerical model to determine the composition of H_2O-NaCl-CaCl_2 fluid inclusions based on microthermometric and microanalytical data[J].Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society,20111(1):21-40. |
[5] | 朱江;吕新彪;彭三国;龚银杰;曹晓峰.甘肃花牛山金矿床成矿年代、流体包裹体及稳定同位素研究[J].大地构造与成矿学,2013(4):641-652. |
[6] | 邓碧平;刘显凡;张民;赵甫峰;徐窑窑;田晓敏;李慧;胡琳.云南老王寨金矿床深部地质过程的流体包裹体与稀有气体同位素示踪[J].成都理工大学学报(自然科学版),2014(2):203-216. |
[7] | 王力;潘忠翠;孙丽伟.山东莱州新城金矿床流体包裹体[J].吉林大学学报(地球科学版),2014(4):1166-1176. |
[8] | 李保华;顾雪祥;付绍洪;徐仕海;陈翠华;董树义.贵州水银洞金矿床成矿流体不混溶的包裹体证据[J].地学前缘,2010(2):286-294. |
[9] | 卢焕章.流体不混溶性和流体包裹体[J].岩石学报,2011(05):1253-1261. |
[10] | G.Xu;P.J.Pollard.Origin of CO2-rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold Belt, NW Queensland, and their implications for mineralization[J].Mineralium deposita,19994(4):395-404. |
[11] | 孙晓明;韦慧晓;翟伟;石贵勇;梁业恒;莫儒伟;韩墨香;张相国.藏南邦布大型造山型金矿成矿流体地球化学和成矿机制[J].岩石学报,2010(6):1672-1684. |
[12] | 李永胜;赵财胜;吕志成;严光生;甄世民.西藏甲玛铜多金属矿床流体包裹体特征及地质意义[J].吉林大学学报(地球科学版),2011(1):122-136. |
[13] | 李秉伦.矿物中包裹体气体成分的物理化学参数图解[J].地球化学,1986(02):126-137. |
[14] | 李晶;陈衍景;李强之;赖勇;杨荣生;毛世东.甘肃阳山金矿流体包裹体地球化学和矿床成因类型[J].岩石学报,2007(9):2144-2154. |
[15] | 罗小平;薛春纪;李建全;王伟;李天虎;彭桥梁;田海.新疆西天山查汗萨拉金矿床流体包裹体特征及稳定同位素研究[J].地质学报,2011(4):505-515. |
[16] | 肖晔;丰成友;李大新;刘建楠.青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J].地质学报,2014(5):895-902. |
[17] | HUANG Min;LAI Jianqing;MO Qingyun.Fluid Inclusions and Metallization of the Kendekeke Polymetallic Deposit in Qinghai Province, China[J].地质学报(英文版),2014(02):570-583. |
[18] | 陈衍景;李晶;Franco PIRAJNO;林治家;王海华.东秦岭上宫金矿流体成矿作用:矿床地质和包裹体研究[J].矿物岩石,2004(3):1-12. |
[19] | 侯林;邓军;丁俊;汪雄武;彭惠娟.四川丹巴燕子沟造山型金矿床成矿流体特征研究[J].地质学报,2012(12):1957-1971. |
[20] | 彭建堂.湖南雪峰地区金成矿演化机理探讨[J].大地构造与成矿学,1999(02):144-151. |
[21] | 彭小军;廖秋明;吴跃升;魏道芳;刘学通.雪峰金矿田矿床地质特征及成矿模式[J].国土资源导刊,2008(4):35-39. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%