橡胶材料本构模型大致可以分为两大类:基于应变能函数的唯象模型和基于分子链网络的统计模型.概述了分子链网络本构模型中的几个典型代表及其优缺点,以及近年来发展的几种修正模型.
参考文献
[1] | 杨挺青;罗文波;徐平.黏弹性理论与应用[M].北京:科学出版社,2004 |
[2] | Mary C. Boyce;Ellen M. Arruda .Constitutive models of rubber elasticity: a review[J].Rubber Chemistry and Technology,2000(3):504-523. |
[3] | Treloar L R G.The physics of rubber elasticity[J].Oxford:clarendon Press,1975 |
[4] | 危银涛;杨挺青;杜星文 .橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(04):281. |
[5] | Beda T .Modeling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models[J].Journal of Polymer Science, Part B. Polymer Physics,2007(13):1713-1732. |
[6] | Treloar L R G .The elasticity of a network of long chain molecules[J].Rubber Chemistry and Technology,1943,16(04):746. |
[7] | Kuhn W;Grün F .Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe[J].Kolloid-Zeitschrift,1942,101(03):248. |
[8] | Treloar L R G;Riding G .A Non-Gaussian theory for rubber in biaxial strain.Ⅰ.Mechanical Properties[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1979,369(1737):261. |
[9] | Wu P D;Van der Giessen E .On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J].Journal of the Mechanics and Physics of Solids,1993,41(03):427. |
[10] | Marckmann G.;Verron E.;Gornet L.;Chagnon G.;Charrier P.;Fort P. .A theory of network alteration for the Mullins effect[J].Journal of the Mechanics and Physics of Solids,2002(9):2011-2028. |
[11] | James H M;Guth E .Theory of the elastic properties of rubber[J].Journal of Chemical Physics,1943,11(10):455. |
[12] | Flory P J .Network structure and the elastic properties of vulcanized rubber[J].Chemical Reviews,1944,35:51. |
[13] | Arruda E M;Boyce M C .A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J].Journal of the Mechanics and Physics of Solids,1993,41(02):389. |
[14] | Alex Elias-Zuniga;Millard F. Beatty .Constitutive equations for amended non-Gaussian network models of rubber elasticity[J].International Journal of Engineering Science,2002(20):2265-2294. |
[15] | Lim G T .Scratch behavior of polymers[D].Texas A & M University,2005. |
[16] | Bergstrom JS.;Boyce MC. .Constitutive modeling of the large strain time-dependent behavior of elastomers[J].Journal of the Mechanics and Physics of Solids,1998(5):931-954. |
[17] | Wu J D;Kenneth M L .Muhiaxial and time dependent behavior of a filled rubber[J].Mechanics of Time-dependent Materials,2000,4(04):293. |
[18] | Tomita Y.;Tanaka S. .PREDICTION OF DEFORMATION BEHAVIOR OF GLASSY POLYMERS BASED ON MOLECULAR CHAIN NETWORK MODEL[J].International Journal of Solids and Structures,1995(23):3423-3434. |
[19] | Yoshihiro Tomita;Wei Lu;Masato Naito;Yasuhiro Furutani .Numerical evaluation of micro- to macroscopic mechanical behavior of carbon-black-filled rubber[J].International Journal of Mechanical Sciences,2006(2):108-116. |
[20] | Shen M;Blatz P J .Energy contribution to rubber elasticity[J].Journal of Applied Physics,1968,39(11):4937. |
[21] | Indukuri KK;Lesser AJ .Comparative deformational characteristics of poly(styrene-b-ethylene-co-butylene-b-styrene) thermoplastic elastomers and cross-linked natural rubber[J].Polymer: The International Journal for the Science and Technology of Polymers,2005(18):7218-7229. |
[22] | 杨小震.链分子的构象弹性理论[J].中国科学B辑,2001(01):78-88. |
[23] | Bischoff J;Arruda E;Grosh K .A new constitutive equation for the compressibility of elastomers at finite deformations[J].Rubber Chemistry and Technology,2001,74(04):541. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%