欢迎登录材料期刊网

材料期刊网

高级检索

主要论述水冷铜坩埚内的Czochralski定向凝固、电子束定向凝固、光悬浮定向凝固、整体定向凝固和电磁冷坩埚定向凝固5种定向凝固的基本原理,优缺点以及研究定向凝固Nb-Si基超高温合金所取得的进展.现阶段,基本不用Czochralski定向凝固和电子束定向凝固研究Nb-Si基超高温合金了;到目前为止,光悬浮定向凝固是制备研究Nb-Si基超高温合金的主要手段;整体定向凝固制备的Nb-Si基超高温合金的断裂韧性已达20 MPa·m1/2左右;电磁冷坩埚定向凝固制备的Nb-Si基超高温合金的高温拉伸强度已达200 MPa (1250℃).

参考文献

[1] Haisheng Guo;Xiping Guo .Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy[J].Scripta materialia,2011(7):637-640.
[2] Y.X. Tian;J.T. Guo;L.Y. Sheng .Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys[J].Intermetallics,2008(6):807-812.
[3] B.P. Bewlay;M.R. Jackson;J.-C. Zhao;P. R. Subramanian;M.G. Mendiratta;J.J. Lewandowski .Ultrahigh-Temperature Nb-Silicide-Based Composites[J].MRS bulletin,2003(9):646-653.
[4] BewlayBP;JacksonMR;ZhaoJC et al.Areviewofvery-high-temperature Nb-silicide-based composites[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34A(10):2043.
[5] Y.X. Tian;J.T. Guo;G.M. Cheng;L.Y. Sheng;L.Z. Zhou;L.L. He;H.Q. Ye .Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy[J].Materials & design,2009(6):2274-2277.
[6] Bewlay B P;Jackson M R;Lipsitt H A .The Nb-Ti-Si ternary phase diagram:Evaluation of liquid-solid phase equilibria in Nb-and Ti-rich alloys[J].JOURNAL OF PHASE EQUILIBRIA,1997,18(03):264.
[7] Mendiratta M G;Lewandowski J J;Dimiduk D M .Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1991,22(07):1573.
[8] Bewlay B P;Jackson M R;Lipsitt H A .The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,27A(12):3801.
[9] JIANGBO SHA;HISATOSHI HIRAI;TATSUO TABARU .Mechanical Properties of As-Cast and Directionally Solidified Nb-Mo-W-Ti-Si In-Situ Composites at High Temperatures[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2003(1):85-94.
[10] Li, Y.;Ma, C.;Zhang, H.;Miura, S. .Mechanical properties of directionally solidified Nb-Mo-Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(18):5772-5777.
[11] Sekido N;Kimura Y;Miura S et al.Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys[J].Journal of Alloys and Compounds,2006,425(1-2):223.
[12] 郭喜平,高丽梅.电子束区熔定向凝固Nb基高温合金的组织和性能[J].航空材料学报,2006(03):47-51.
[13] P. Guan;X.P. Guo;X. Ding .DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE OF AN ULTRA-HIGH TEMPERATURE Nb-Si-Ti-Hf-Cr-Al ALLOY[J].Acta metallurgica Sinica,2004(4):450-454.
[14] 康永旺 .合金化及制备方法对Nb-Si系超高温结构材料组织和性能的影响[D].北京:航空材料研究院,2008.
[15] Wu, M.;Wang, Y.;Li, S.;Jiang, L.;Han, Y. .Effect of Si on microstructure and fracture toughness of directionally solidified Nb silicide alloys[J].International Journal of Modern Physics, B. Condensed Matter Physics, Statistical Physics, Applied Physics,2010(15/16 Pt.2):2964-2969.
[16] Kim W Y;Tanaka H;Kasama A et al.Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites[J].INTERMETALLICS,2001,9:827.
[17] Sekito Y;Miura S;Ohkubo K et al.Effect of growth rate on microstructure and microstructure evolution of directionally solidified Nb-Si alloys[J].Materials Research Society Symposium Proceedings,2009,1128:38.
[18] 姚成方,郭喜平,郭海生.Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析[J].金属学报,2008(05):579-584.
[19] 何永胜,郭喜平,郭海生,孙志平.铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化[J].金属学报,2009(09):1035-1041.
[20] 王勇,郭喜平.凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J].金属学报,2010(04):506-512.
[21] Yan Y C;Ding H S;Song J X .Solidification structure analysis of cold crucible directionally solidified Nb-Si based alloy[J].Procedia Eng,2012(27):1033.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%