欢迎登录材料期刊网

材料期刊网

高级检索

本文由粘性流体动力学方程组导出溶潭内涡旋、速度及温度的分布。求得合金Fe_(40)Ni_(40)P_(14)B_6的热边界层厚度ΔR_T及粘性切变层厚度ΔR_v分别是140μm及11μm。在非晶带-溶潭的交界面处淬火速率是4.6—2.3×10~6℃/s,而固化时间则是0.8—1.6×10~(-4)s。非晶宽带的厚度h与宽度b的经验公式在3—5%范围内与实验数据一致。h及b与线速度v_r之间的关系式可用近于理想冷却模型加以描述。Prandtl准数Pr=7.8×10~(-2)说明热边界层厚度比粘性切变层厚度大13倍,而Nusselt准数Nu=1—2表明非晶带-铜辊的交界面处于居间冷却状态。

The distribution of vorticity, velocity and temperature of the melt puddle were obtained by the viscous hydrodynamic equations. It is found that the thickness of thermal gradient layer, ΔR_T, and viscous shear layer, ΔR_v, of the alloy Fe_(40)Ni_(40)P_(14)B_6 are 140 and 11μm respectively. The quench rate on the ribbon at the ribbon-melt interface is (4.6—2.3)×10~6℃/s, and the solidification time is (0.8—1.6)×10~(-4)s. The empirical equations of thickness, h, and width, b, of the amorphous wide ribbons are in accord with the experimental data in the range of 3—5%. The observed relations among h, b and wheel velocity, ν_r, are well described by the model of nearly ideal cooling. The Prandtl number, Pr=7.8×10~(-2) indicating the thermal gradient layer was 13 times thicker than the viscous shear layer, and the Nusselt number, Nu=1—2 indicated intermediate cooling condition at the ribbon-wheel interface.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%