欢迎登录材料期刊网

材料期刊网

高级检索

采用聚甲基丙烯酰亚胺(PMI)泡沫、碳纤维增强环氧树脂(EW220/5258)复合材料面板制备了PMI泡沫夹芯复合材料,研究了PMI泡沫夹芯复合材料、EW220/5258复合材料面板及PMI泡沫芯材的吸湿特性,并讨论了湿热对PMI泡沫夹芯复合材料的压缩性能及介电性能的影响。结果发现:PMI泡沫夹芯复合材料的饱和吸湿时间为96h,饱和吸湿率为1.7%,EW220/5258复合材料面板会对PMI泡沫芯材起到一定的保护作用,阻止水汽进入泡沫,提高PMI泡沫夹芯复合材料的耐湿热性;由于水分子的增塑作用,湿热处理后PMI泡沫夹芯复合材料的压缩强度有所下降,强度保持率约为65.87%,湿热处理初期对其影响较大;湿热处理后,在7~18GHz的测试范围内,PMI泡沫夹芯复合材料的损耗角正切从0.008上升到0.012,介电常数几乎不变。

The polymethacrylimide(PMI) foam cored sandwich structure was prepared by using PMI foam,carbon fiber/epoxy resin(EW220/5258)composites panel.The absorption curves of PMI foam cored sandwich structure,EW220/5258 composite panel and PMI foam were investigated,and the effect of the hydrothermal condition on the compressive and dielectric properties of the PMI foam cored sandwich structure was also determined.The results indicate that the saturated hygroscopic time of the PMI foam cored sandwich structure is 96 hours and its absorption ratio is 1.7%,the EW220/5258 composite panel can protect its PMI foam from water to improve its hydrothermal resistance.Due to the plasticization of water,the compressive strength of the PMI foam cored sandwich structure decreases in hydrothermal environment with the retention ratio of 65.87%.Additionally,the initial stage has more influences on the properties than other stages of hydrothermal treatment.After hydrothermal treatment,the loss tangent of the PMI foam cored sandwich structure increases from 0.008 to 0.012 within the range of 7~18 GHz,while the dielectric constant is almost unchanged.

参考文献

[1] 郭笑坤, 殷立新, 詹茂盛. 低介质损耗雷达罩用复合材料的研究进展 [J]. 高科技纤维与应用, 2003, 28(6): 29-33.
[2] Marie H J, O'meara, et al. D glass-A new low dielectric glass fiber available in the USA // International SAMPE Symposium and Exhibition (Proceedings). 1993, 38(2): 1833- 1844..
[3] 郑锡涛, 孙 秦, 李 野, 等. 全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定 [J]. 复合材料学报, 2006, 23(6): 29-36.
[4] 王兴业. 夹层结构复合材料设计原理及其应用 [M]. 北京: 化学工业出版社, 2007.
[5] 高树理, 柴孟贤, 张明习. 透波复合材料研究进展 [J]. 工程塑料应用, 2000, 28(5): 31-35.
[6] Seibert H. Applications for PMI foams in aerospace sandwich structures [J]. Reinforced Plastics, 2006, 50(1): 44-48.
[7] Kishore, Shankar R, Sankaran S. Gradient syntactic foams: Tensile strength, modulus and fractographic features [J]. Materials Science and Engineering: A, 2005, 412(1/2): 153-158.
[8] Borsellino C, Calabrese L, Bella G D. Effect of bonder at skin/core interface on the mechanical performances of sandwich structures used in marine industry [J]. Applied Composite Materials, 2007, 14: 307-323.
[9] 过梅丽, 肇 研, 谢 令. 航空航天结构复合材料湿热老化机理的研究 [J]. 宇航材料工艺, 2002(4): 51-54.
[10] Bibin J, Reghunadhan Nair C P, Dona M, et al. Foam sandwich composites with cyanate ester based syntactic foam as core and carbon-cyanate ester as skin: Processing and properties [J]. Journal of Applied Polymer Science, 2008, 110(3): 1366-1374.
[11] Veazie D R, Robinson K R, Shivakumar K. Effects of the marine environment on the interfacial fracture toughness of PVC core sandwich composites [J]. Composites: Part B, 2004, 35: 461-466.
[12] Moynot V S, Gimenez N, Sautereau H. Hydrolytic ageing of syntactic foams for thermal insulation in deep water: Degradation mechanisms and water uptake model [J]. Journal of Materials Science, 2006, 41: 4047-4054.
[13] Gupta N, Woldesenbet E. Hygrothermal studies on syntactic foams and compressive strength determination [J]. Composite Structures, 2003, 61: 311-320.
[14] 冯 青, 李 敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究 [J]. 复合材料学报, 2010, 27(6): 16-20.
[15] 彭 雷, 张建宇, 鲍 蕊, 等. 湿热、紫外环境对T300/QY8911复合材料孔板静力性能的影响 [J]. 复合材料学报, 2009, 26(3): 18-23.
[16] 李 敏, 张宝艳. 改性双马树脂/碳纤维复合材料体系耐湿热性能研究 [J]. 热固性树脂, 2006, 21(5): 25-27.
[17] 李 涛, 陈 蔚, 成 理. 泡沫夹层结构复合材料的应用与发展 [J]. 科技创新导报, 2009, 14: 3-5.
[18] 胡建平, 蔡吉喆, 肇 研. 湿热环境对蜂窝夹层复合材料性能的影响 [J]. 材料工程, 2010(11): 43-47.
[19] Katzman H A, Castaneda R M, Lee H S. Moisture diffusion in composite sandwich structures [J]. Composites: Part A, 2008, 39: 887-892.
[20] Guo Baochun, Jia Demin, Fu Weiwen, et al. Hygrothermal stability of dicyanate novolac epoxy resin blends [J]. Polymer Degradation and Stability, 2003, 79: 521-528.
[21] 马 立, 刘 芃, 胡 培. PMI泡沫材料在航天器结构中应用的可行性研究 [J]. 航天器环境工程, 2010, 27(2): 164-168.
[22] Bulmanis V N, Gunyaev G M, Krivonos V V. RISA SPA VLAM [M]. Moscow: USSR, 1991.
[23] 肇 研, 梁朝虎. 聚合物基复合材料自然老化寿命预测方法 [J]. 航空材料学报, 2001, 21(2): 55-58.
[24] 杜 龙, 矫桂琼, 黄 涛, 等. X状Z-pin增强泡沫夹层结构的剪切性能 [J]. 复合材料学报, 2007, 24(6): 140-146.
[25] 胡建平, 蔡吉喆, 肇 研. Nomex/氰酸酯树脂夹层复合材料耐湿热性研究 [J]. 材料工程, 2010(9): 58-61.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%