复合材料学报, 2012, 29(2): 46-52.
湿热环境对PMI泡沫夹芯复合材料性能的影响
董安琪 1, , 段跃新 2, , 顾欣","id":"d2ac2d1c-d72b-4687-a69c-575458f874ca","originalAuthorName":"顾欣"}],"doi":"","fpage":"238","id":"d7baa853-3320-454e-b4dc-b46ccd9d58d1","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"31985e07-0aaa-4f1c-a0ad-d439b5f0e71d","keyword":"气液两相流","originalKeyword":"气液两相流"},{"id":"9b409a33-7c5d-4693-8316-07868d6b40e6","keyword":"分层流","originalKeyword":"分层流"},{"id":"7ba1f152-802d-4b19-b002-d2593df0fcc4","keyword":"截面含气率","originalKeyword":"截面含气率"},{"id":"9bdca30a-6d1d-4691-a91d-806469d09205","keyword":"液层高度","originalKeyword":"液层高度"}],"language":"zh","publisherId":"gcrwlxb200202031","title":"倾斜下降管气液两相分层流截面含气率的计算与液层高度的预测","volume":"23","year":"2002"},{"abstractinfo":"以国内第2代单晶高温合金DD6为研究对象,研究了型壳中央散热对其凝固组织与持久性能的影响.结果表明,与合金中柱型壳相比,石墨中柱型壳能有效地改善单晶凝固过程中温度场的均匀性,提高温度梯度,有利于保持单晶凝固过程中热流方向的平直.因此,石墨中柱型壳有利于降低一次枝晶间距,细化γ-γ'共晶相,减少单晶生长方向与[001]方向的角度差,使单晶高温合金获得较高的持久寿命.","authors":[{"authorName":"乐献刚","id":"48cdf195-6458-45b5-9ff6-1948a21ff199","originalAuthorName":"乐献刚"},{"authorName":"周亦胄","id":"bcd80cde-aab7-4f5a-a8f2-dae78948e896","originalAuthorName":"周亦胄"},{"authorName":"尚伟","id":"db87d3d7-ee03-426d-92e8-7707b4c8eef2","originalAuthorName":"尚伟"},{"authorName":"裴延玲","id":"99932123-2d6c-421f-84f4-45775baa264b","originalAuthorName":"裴延玲"},{"authorName":"顾欣","id":"09101c53-d5e4-426b-9206-5004b959b56c","originalAuthorName":"顾欣"},{"authorName":"孙长波","id":"f6aaee02-e955-4545-bbf4-f0582b69bfff","originalAuthorName":"孙长波"}],"doi":"","fpage":"2057","id":"79024d4c-ee7a-4f41-820d-3fa83a925005","issue":"8","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"843657c5-73e5-4aa6-a033-3c9422d6ddbe","keyword":"型壳中央散热","originalKeyword":"型壳中央散热"},{"id":"41ec6cbb-7bf0-45ee-b340-6a452795e265","keyword":"单晶高温合金","originalKeyword":"单晶高温合金"},{"id":"54f26300-27d3-45cb-81a7-ac12ffc2fe21","keyword":"温度场","originalKeyword":"温度场"},{"id":"d9c90208-18e9-4901-8ad5-68a3a1d058e4","keyword":"凝固组织","originalKeyword":"凝固组织"},{"id":"5879f92f-810d-43b0-94db-e65849833e03","keyword":"持久寿命","originalKeyword":"持久寿命"}],"language":"zh","publisherId":"xyjsclygc201608026","title":"型壳中央散热对DD6单晶高温合金凝固组织与持久性能的影响","volume":"45","year":"2016"},{"abstractinfo":"利用粒子图像速度场测量(PIV)技术对不同燃空速度比下的钝体回流扩散燃烧流场进行了测量,考察不同火焰的湍流结构特性.结果表明,流场中轴向脉动速度沿钝体中心轴线成对称分布,轴向脉动速度最大值出现在钝体中心轴线处,流场切向雷诺应力以饨体轴线呈中心对称,在中心轴线处切向雷诺应力值为0,随燃空速度比的增大,轴向脉动速度和切向雷诺应力不断增大,随着与钝体表面的距离增加,流场截面上最大轴向脉动速度不断减小,最大切向雷诺应力先增大,后减小.","authors":[{"authorName":"葛冰","id":"c8e55d1a-90c7-486c-9ec2-ed7e5e6c224c","originalAuthorName":"葛冰"},{"authorName":"臧述升","id":"8f92c2a0-67d0-4c19-b94a-06b32211aec6","originalAuthorName":"臧述升"},{"authorName":"顾欣","id":"07562b99-d420-46ec-9c91-677ec6db8d19","originalAuthorName":"顾欣"}],"doi":"","fpage":"1603","id":"32a0c423-49b5-46cf-9ff4-80a4824d0462","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8c9380fe-2a41-494d-a73b-32335025b003","keyword":"湍流扩散燃烧","originalKeyword":"湍流扩散燃烧"},{"id":"ba6bcd98-29f0-4171-a1cd-2305f78fb318","keyword":"湍流测量","originalKeyword":"湍流测量"},{"id":"22bd41a5-c784-4c1d-9f64-9f627782ec2d","keyword":"PIV测量","originalKeyword":"PIV测量"},{"id":"22c63ac9-51d2-4395-8de4-4a82f70519a0","keyword":"钝体","originalKeyword":"钝体"}],"language":"zh","publisherId":"gcrwlxb200809045","title":"回流扩散燃烧火焰湍流结构特性的PIV测量","volume":"29","year":"2008"},{"abstractinfo":"利用二维粒子成像速度仪(PIV)对钝体燃烧器中的甲烷/湿空气扩散燃烧的速度场进行测量,考察其火焰的结构特性及其内部流动状况.通过对湿空气燃烧流场与普通燃烧流场的对比分析表明,湿空气燃烧情况下,两种燃烧状态的火焰(回流燃烧火焰和中心射流主导火焰)相互转换的燃空速度比(γ)值要比普通燃烧的小;湿空气燃烧使得喷嘴后的同流空气的速度降低,空气的回流作用减弱,燃料更容易冲出回流区,火焰的稳定性能变差.","authors":[{"authorName":"顾欣","id":"f2a6c739-6fdb-4bf3-8175-35eec5db5f5b","originalAuthorName":"顾欣"},{"authorName":"臧述升","id":"0c278709-572e-4a43-a294-25710b43cf1e","originalAuthorName":"臧述升"},{"authorName":"葛冰","id":"88ecad68-c3db-4c1b-afec-af15d2e63b79","originalAuthorName":"葛冰"}],"doi":"","fpage":"343","id":"fa7f3abd-2271-4fef-afd8-ce6b72dfe38f","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2430c016-4d17-457d-bf5d-19bdd64d01aa","keyword":"扩散燃烧","originalKeyword":"扩散燃烧"},{"id":"0a8471ea-ae79-4a0d-9639-3e5c51dc81a9","keyword":"湿空气燃烧","originalKeyword":"湿空气燃烧"},{"id":"4f663099-1c09-4f84-85d9-62f38a574530","keyword":"火焰结构","originalKeyword":"火焰结构"},{"id":"033c475d-cca7-4b67-9190-eef4bcdefb2d","keyword":"燃烧激光诊断","originalKeyword":"燃烧激光诊断"}],"language":"zh","publisherId":"gcrwlxb200602052","title":"湿空气扩散燃烧火焰结构特性研究","volume":"27","year":"2006"},{"abstractinfo":"","authors":[{"authorName":"张小明","id":"404336ed-f70d-4854-956f-494ad6849844","originalAuthorName":"张小明"}],"doi":"10.3969/j.issn.1009-9964.2000.01.003","fpage":"10","id":"6d5d1bb8-0136-4e83-bb47-6f294a6fb119","issue":"1","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"29f61494-d214-4871-9a30-14659023ab70","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"tgyjz200001003","title":"日本钛研究50年回顾","volume":"","year":"2000"},{"abstractinfo":"本文讨论了近10年来我们研究组在探索紫外、深紫外非线性光学晶体方面的经历。这些经历中有成功的一面,也有不成功的一面。成功的一面包括KBBF晶体的发现及最短倍频波的输出(184.7nm),以及最近使用的一种特殊的器件设计,使KBBF晶体能够产生有效的深紫外谐波光输出;KABO晶体的发现及厘米级晶体的获得,有可能使此晶体在Nd∶YAG激光的4、5倍频器件中得到应用。而我们没有想到的是线性和非线性光学性能均很优秀的SBBO晶体,却发现结构的完整性有问题,目前还不能得到实际的应用,在今后仍需花很大的精力去研究它。最后,我们虽然已花了10年时间,但深紫外非线性光学晶体仍旧没有得到理想的解决,还需我们继续努力。由此可见,一个科学问题的认真解决,是需要花非常长的时间。本文希望把我们研究组的近10年来的经验写出来,供大家参考,以求共勉。","authors":[{"authorName":"陈创天","id":"1b00aba3-d500-42ee-94d5-2f7edda21b46","originalAuthorName":"陈创天"}],"doi":"10.3969/j.issn.1000-985X.2001.01.004","fpage":"36","id":"02a2cba5-fddf-499b-a4d4-68eec74e2114","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7b6b5402-3a28-461f-9e6c-e2f02dd65a91","keyword":"非线性光学晶体","originalKeyword":"非线性光学晶体"},{"id":"347fe1c7-362f-4262-96cb-e8959d3d1e4a","keyword":"紫外","originalKeyword":"紫外"},{"id":"b3eb9811-f7e9-4475-a418-db622d95f195","keyword":"深紫外","originalKeyword":"深紫外"},{"id":"da7d3304-0c58-4e21-b6cc-eee9422506ff","keyword":"结构性能关系","originalKeyword":"结构性能关系"},{"id":"1b62cc83-fb01-4bc0-8bef-f5a60f542291","keyword":"KBBF","originalKeyword":"KBBF"},{"id":"12ccd21d-a223-47fa-a8da-417c483b954e","keyword":"KABO","originalKeyword":"KABO"}],"language":"zh","publisherId":"rgjtxb98200101004","title":"紫外、深紫外非线性光学晶体探索十年回顾","volume":"30","year":"2001"},{"abstractinfo":"回顾了济钢球团竖炉的发展及其主要设备的技术改造,介绍了不同发展时期的主要做法和经验.","authors":[{"authorName":"赵忠文","id":"7771dfa2-8c1f-49ad-b64c-951d6083c44a","originalAuthorName":"赵忠文"}],"doi":"","fpage":"1","id":"191e0c71-ce93-4004-b47a-7c07d7825a2a","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2327cd3e-2f0a-40c1-ae8a-793f74130c04","keyword":"竖炉球团","originalKeyword":"竖炉球团"},{"id":"cef794c8-0e2e-4016-b542-3d7ffaa49d05","keyword":"发展","originalKeyword":"发展"},{"id":"5c1eae32-6c11-41a6-ad7e-2416e21192cc","keyword":"回顾","originalKeyword":"回顾"}],"language":"zh","publisherId":"gt199905001","title":"济钢竖炉球团生产30年回顾","volume":"34","year":"1999"},{"abstractinfo":"","authors":[{"authorName":"","id":"a5ab097d-7c22-4b78-bbb1-fc7339837f35","originalAuthorName":""},{"authorName":"","id":"bea34fda-770b-45dc-ae78-a677cbe4564b","originalAuthorName":""}],"doi":"10.1016/S1872-2067(12)60724-4","fpage":"1","id":"a1689f15-d893-4ffa-a024-d06a4e5049c1","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"44fce672-f719-4a40-90e0-c826961e4204","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"cuihuaxb201401001","title":"湿式氧化用于染料废水脱色:过去20年回顾","volume":"35","year":"2014"},{"abstractinfo":"值庆贺《膜科学与技术》杂志创刊三秩之年,陶瓷分离膜技术从核燃料浓缩分离转而民生应用至今也走过了大约30个春秋.现借机简要回顾其三个十年的历史性发展,阅历现状、展望未来,以期对促进无机膜在新工业革命中发挥关键创新作用有所助益.","authors":[{"authorName":"孟广耀","id":"c3fda7b1-f277-4dc3-b1ab-af69c9aa688a","originalAuthorName":"孟广耀"},{"authorName":"陈初升","id":"df0eac5f-1999-46b3-8949-0a89bef74006","originalAuthorName":"陈初升"},{"authorName":"刘卫","id":"f62a2d76-ef39-403b-8edc-d7570775a2d4","originalAuthorName":"刘卫"},{"authorName":"刘杏芹","id":"8386f709-a3e8-4d7a-a5da-6cc254dbf619","originalAuthorName":"刘杏芹"},{"authorName":"彭定坤","id":"31524e29-2e87-4e4d-bff8-628d0efa91a4","originalAuthorName":"彭定坤"}],"doi":"10.3969/j.issn.1007-8924.2011.03.014","fpage":"86","id":"e69c51e8-9ae2-4a1d-9604-c052ec15cdb8","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"4ee83e9e-ba84-40d6-aea2-9f743ae9c8ae","keyword":"陶瓷膜","originalKeyword":"陶瓷膜"},{"id":"0a6bd473-9970-4b16-b343-8c48b4c6c3ef","keyword":"膜技术","originalKeyword":"膜技术"},{"id":"2aeb49b8-85c2-4171-a070-7caf0f4d39d7","keyword":"水处理","originalKeyword":"水处理"},{"id":"1c816138-6fc3-477a-97c9-ffda6f1446d6","keyword":"新能源","originalKeyword":"新能源"}],"language":"zh","publisherId":"mkxyjs201103014","title":"陶瓷膜分离技术发展30年回顾与展望","volume":"31","year":"2011"},{"abstractinfo":"概述了热喷涂纳米涂层的发展,包括通过纳米粉体的再造粒技术形成热喷涂纳米结构涂层的过程,热喷涂纳米结构氧化铝/氧化钛耐磨抗蚀涂层材料的研发、产业化与成功应用,偶然获得热喷涂纳米自润滑涂层的过程,液料热喷涂纳米热障涂层的研发,新型热喷涂纳米热障涂层材料等.展望了热喷涂纳米涂层技术在国防和民用领域的应用前景,预计到2025年,全球热喷涂纳米涂层市场会达到65亿美元,其中20%左右的市场份额在中国.最后,指出通过对纳米粉体进行再造粒,在纳微观尺度上调控可喷涂粉体喂料的成分和组织结构,能够获得各种所需性能的纳米结构热喷涂涂层,可以用纳米材料制备出常规材料无法获得的全新高性能热喷涂纳米涂层,以满足各种高端装备关键构件的各种表面性能需求.所以,要通过政产学研用合作创新,加快纳米结构可喷涂粉体喂料产业化,发展高性能的热喷涂纳米涂层.","authors":[{"authorName":"王铀","id":"ac834150-d6cc-4887-922c-87b2bd28b2e9","originalAuthorName":"王铀"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.09.001","fpage":"1","id":"204fc3b7-8a4f-4d11-912a-22cba9a3dd64","issue":"9","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"0dc8b68b-da34-4742-a1c2-c9a730eb22c3","keyword":"热喷涂","originalKeyword":"热喷涂"},{"id":"e97b2775-5f68-494a-91db-b80a0f8ef099","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"e952329c-a815-45ae-bfda-caaa020e8ff7","keyword":"再造粒过程","originalKeyword":"再造粒过程"},{"id":"6f698c3a-fe7e-40a7-a803-de53829a7066","keyword":"纳米涂层","originalKeyword":"纳米涂层"}],"language":"zh","publisherId":"bmjs201609001","title":"热喷涂纳米涂层20年回顾与展望","volume":"45","year":"2016"}],"totalpage":3,"totalrecord":28}