室温条件下通过固相反应合成了SnO2纳米颗粒前驱物.在600~780℃对前驱物进行焙烧,在NaCl、KCl和KCl+NaCl的熔盐介质中SnO2前驱物纳米颗粒自组装生长形成SnO2 纳米棒.利用TEM、XRD和XPS对SnO2纳米棒结构、形貌和成分进行了研究.结果表明SnO2纳米棒直径为20~80nm,长度从几百纳米到十几微米.分析了SnO2 纳米颗粒前驱体熔盐介质中的生长,利用固相转变生长可以解释SnO2纳米棒在熔盐介质中的生长机制.
SnO2 nanorods were prepared via annealing precursor powders produced by solid- state reaction at room temperature. The precursor grows into SnO2 nanorods via self assembly annealing at 600~780℃ in NaCl,KCl and KCl+NaCl flux medium respectively. The structure and morpho1ogy of SnO2 nanorods were studied by means of X-ray diffraction (XRD),transmission electron microscopy (TEM) and X-ray photoelectron spectrum (XPS). The results show that diameter and length of the as-made nanorods are in the range of 20nm to 80nm and several micrometers respectively.The solid-state transformation explains the formation mechanism of SnO2 nanorods.
参考文献
[1] | Hu J;Odom T W;Lieber C M .[J].Accounts of Chemical Research,1999,32:435. |
[2] | Seeger T.;Ruhle M.;Kohler-Redlich P. .Synthesis of nanometer-sized SiC whiskers in the arc-discharge[J].Advanced Materials,2000(4):279-282. |
[3] | Zang Y;Suenaga K;Colliex C et al.[J].Science,1998,281:937. |
[4] | Martin C R .[J].Science,1994,266:1961. |
[5] | Martin B;Dermody D J;Reiss B D et al.[J].Advanced Materials,1999,11:1021. |
[6] | Li Y;Ding Y;Wang Z .[J].Advanced Materials,1999,11:847. |
[7] | Holmes J D;Johnston K P;Doty R C et al.[J].Science,2000,287:1471. |
[8] | Givargizov E I .[J].Journal of Crystal Growth,1975,32:20. |
[9] | Morales A M et al.[J].Science,1998,279:208. |
[10] | Han W;Fan S;Li Q et al.[J].Science,2000,277:1287. |
[11] | Yang J;Meldrum F C;Fendler J H .[J].Journal of Physical Chemistry,1995,99:5500. |
[12] | Routkevitch D;Bigini T;Moskovits M et al.[J].Journal of Physical Chemistry,1996,100:14037. |
[13] | Wu Y Y;Yang P D .[J].Chemistry of Materials,2000,12:605. |
[14] | Monteiro OC.;Trindade T. .Preparation of Bi2S3 nanofibers using a single-source method[J].Journal of Materials Science Letters,2000(10):859-861. |
[15] | Nagano M .[J].Journal of Crystal Growth,1984,66:377. |
[16] | Ansari G;Boroojerdian D;Sainker S R et al.[J].Thin Solid Films,1997,295:271. |
[17] | Harrison P G;Willet M J .[J].Nature,1988,332:337. |
[18] | Ferrere S;Zaban A;Gsegg B A .[J].Journal of Physical Chemistry B,1997,101:4490. |
[19] | Aoki A;Sasakura H .[J].Japanese Journal of Applied Physics,1970,9:582. |
[20] | Rowlette J J;Attia H I .[J].Proceedings-the Electrochemical Society,1987,7:25-28. |
[21] | Stampfl S R;Chen Y;Dumesis J A et al.[J].Journal of Catalysis,1987,105:445. |
[22] | Agashe C;Takwale M G;Marathe B R et al.[J].Solar Energy Materials and Solar Cells,1988,17:99. |
[23] | Olive P;Pereira E C;Longo E et al.[J].Journal of the Electrochemical Society,1993,L81:140. |
[24] | Chen S C.Important Reaction of Inorganic Chemistry[M].上海:上海科学技术出版社,1986 |
[25] | Li S Y;Lee C Y;Tseng T Y .[J].Journal of Crystal Growth,2003,247:357-362. |
[26] | Yu DP.;Hang QL.;Yan HF.;Xu J.;Xi ZH.;Feng SQ.;Xing YJ. .Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism[J].Physica, E. Low-dimensional systems & nanostructures,2001(2):305-309. |
[27] | Zhang R Q;Chu T S;Cheung H F et al.[J].Materials Science and Engineering C,2001,16:31-35. |
[28] | Li YB.;Bando Y.;Golberg D.;Kurashima K. .WO3 nanorods/nanobelts synthesized via physical vapor deposition process[J].Chemical Physics Letters,2003(1/2):214-218. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%