欢迎登录材料期刊网

材料期刊网

高级检索

室温条件下通过固相反应合成了SnO2纳米颗粒前驱物.在600~780℃对前驱物进行焙烧,在NaCl、KCl和KCl+NaCl的熔盐介质中SnO2前驱物纳米颗粒自组装生长形成SnO2 纳米棒.利用TEM、XRD和XPS对SnO2纳米棒结构、形貌和成分进行了研究.结果表明SnO2纳米棒直径为20~80nm,长度从几百纳米到十几微米.分析了SnO2 纳米颗粒前驱体熔盐介质中的生长,利用固相转变生长可以解释SnO2纳米棒在熔盐介质中的生长机制.

SnO2 nanorods were prepared via annealing precursor powders produced by solid- state reaction at room temperature. The precursor grows into SnO2 nanorods via self assembly annealing at 600~780℃ in NaCl,KCl and KCl+NaCl flux medium respectively. The structure and morpho1ogy of SnO2 nanorods were studied by means of X-ray diffraction (XRD),transmission electron microscopy (TEM) and X-ray photoelectron spectrum (XPS). The results show that diameter and length of the as-made nanorods are in the range of 20nm to 80nm and several micrometers respectively.The solid-state transformation explains the formation mechanism of SnO2 nanorods.

参考文献

[1] Hu J;Odom T W;Lieber C M .[J].Accounts of Chemical Research,1999,32:435.
[2] Seeger T.;Ruhle M.;Kohler-Redlich P. .Synthesis of nanometer-sized SiC whiskers in the arc-discharge[J].Advanced Materials,2000(4):279-282.
[3] Zang Y;Suenaga K;Colliex C et al.[J].Science,1998,281:937.
[4] Martin C R .[J].Science,1994,266:1961.
[5] Martin B;Dermody D J;Reiss B D et al.[J].Advanced Materials,1999,11:1021.
[6] Li Y;Ding Y;Wang Z .[J].Advanced Materials,1999,11:847.
[7] Holmes J D;Johnston K P;Doty R C et al.[J].Science,2000,287:1471.
[8] Givargizov E I .[J].Journal of Crystal Growth,1975,32:20.
[9] Morales A M et al.[J].Science,1998,279:208.
[10] Han W;Fan S;Li Q et al.[J].Science,2000,277:1287.
[11] Yang J;Meldrum F C;Fendler J H .[J].Journal of Physical Chemistry,1995,99:5500.
[12] Routkevitch D;Bigini T;Moskovits M et al.[J].Journal of Physical Chemistry,1996,100:14037.
[13] Wu Y Y;Yang P D .[J].Chemistry of Materials,2000,12:605.
[14] Monteiro OC.;Trindade T. .Preparation of Bi2S3 nanofibers using a single-source method[J].Journal of Materials Science Letters,2000(10):859-861.
[15] Nagano M .[J].Journal of Crystal Growth,1984,66:377.
[16] Ansari G;Boroojerdian D;Sainker S R et al.[J].Thin Solid Films,1997,295:271.
[17] Harrison P G;Willet M J .[J].Nature,1988,332:337.
[18] Ferrere S;Zaban A;Gsegg B A .[J].Journal of Physical Chemistry B,1997,101:4490.
[19] Aoki A;Sasakura H .[J].Japanese Journal of Applied Physics,1970,9:582.
[20] Rowlette J J;Attia H I .[J].Proceedings-the Electrochemical Society,1987,7:25-28.
[21] Stampfl S R;Chen Y;Dumesis J A et al.[J].Journal of Catalysis,1987,105:445.
[22] Agashe C;Takwale M G;Marathe B R et al.[J].Solar Energy Materials and Solar Cells,1988,17:99.
[23] Olive P;Pereira E C;Longo E et al.[J].Journal of the Electrochemical Society,1993,L81:140.
[24] Chen S C.Important Reaction of Inorganic Chemistry[M].上海:上海科学技术出版社,1986
[25] Li S Y;Lee C Y;Tseng T Y .[J].Journal of Crystal Growth,2003,247:357-362.
[26] Yu DP.;Hang QL.;Yan HF.;Xu J.;Xi ZH.;Feng SQ.;Xing YJ. .Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism[J].Physica, E. Low-dimensional systems & nanostructures,2001(2):305-309.
[27] Zhang R Q;Chu T S;Cheung H F et al.[J].Materials Science and Engineering C,2001,16:31-35.
[28] Li YB.;Bando Y.;Golberg D.;Kurashima K. .WO3 nanorods/nanobelts synthesized via physical vapor deposition process[J].Chemical Physics Letters,2003(1/2):214-218.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%