欢迎登录材料期刊网

材料期刊网

高级检索

通过采用化学气相沉积法(CVD),以金属Ga和NH3为原料,在Si (100)衬底和蓝宝石衬底上采用催化剂Ni合成了GaN微米片.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、X-ray能谱仪(EDS)、光致发光谱(PL)和霍尔效应测试仪(HMS-3000)对样品进行表征.结果表明,生成的微米片为六方纤锌矿结构的GaN;样品在360 nm处有一近带边紫外发射峰,在676 nm处有一个因缺陷引起的弱的红光发射峰;不同衬底上产物GaN的电学性能有所不同.最后,对本实验所得的GaN微米片的形成机理进行了分析.

参考文献

[1] Zhaohui Zhong;Fang Qian;Deli Wang;Charles M. Lieber .Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices[J].Nano letters,2003(3):343-346.
[2] FANG QIAN;YAT LI;SILVIJA GRADECAK .Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J].Nature materials,2008(9):701-706.
[3] Ulrich T. Schwarz;Markus Pindl;Werner Wegscheider;Christoph Eichler;Ferdinand Scholz;Michael Furitsch;Andreas Leber;Stephan Miller;Alfred Lell;Volker Harle .Near-field and far-field dynamics of (Al,In)GaN laser diodes[J].Applied physics letters,2005(16):161112-1-161112-3-0.
[4] Tang YB;Chen ZH;Song HS;Lee CS;Cong HT;Cheng HM;Zhang WJ;Bello I;Lee ST .Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells[J].Nano letters,2008(12):4191-4195.
[5] M. Asif Khan;X. Hu;A. Tarakji .AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates[J].Applied physics letters,2000(9):1339-1341.
[6] 翟化松,王坤鹏,余春燕,翟光美,董海亮,许并社.N2流量对GaN的形貌及光学和电学性能的影响[J].无机化学学报,2013(10):2027-2033.
[7] Cai XM;Djurisic AB;Xie MH;Chiu CS;Gwo S .Growth mechanism of stacked-cone and smooth-surface GaN nanowires[J].Applied physics letters,2005(18):3103-1-3103-3-0.
[8] Chen XL.;Cao YG.;Lan YC.;Li H.;He M.;Wang CY.;Zhang Z.;Qiao ZY.;Li JY. .Straight and smooth GaN nanowires[J].Advanced Materials,2000(19):1432-1434.
[9] Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy[J].Applied physics letters,2003(10):1601-1603.
[10] J.Y. Li;X.L. Chen;Z.Y. Qiao .Formation of GaN nanorods by a sublimation method[J].Journal of Crystal Growth,2000(3/4):408-410.
[11] 陈金华,薛成山,庄惠照,李红,秦丽霞,杨兆柱.GaN纳米棒的催化合成及其发光特性[J].物理化学学报,2008(02):355-358.
[12] Z.J.Li;X.L.Chen;H.J.Li;Q.Y.Tu;Z.Yang;Y.P.Xu;B.Q.Hu .Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires[J].Applied physics, A. Materials science & processing,2001(5):629-632.
[13] Yow-Gwo Wang;Shu-Wei Chang;Cheng-Chang Chen;Ching-Hsueh Chiu;Ming-Yen Kuo;M. H. Shih;Hao-Chung Kuo .Room temperature lasing with high group index in metal-coated GaN nanoring[J].Applied physics letters,2011(25):251111-1-251111-3.
[14] J.Y. Moon;H.Y. Kwon;M.J. Shin;Y.J. Choi;H.S. Ahn;J.H. Chang;S.N. Yi;Y.J. Yun;D.H. Ha;S.H. Park .Growth behavior of GaN nanoneedles with changing HCl/NH_3 flow ratio[J].Materials Letters,2009(30):2695.
[15] Li JY;Liu J;Wang LS;Chang RPH .Physical and Electrical Properties of Chemical Vapor Grown GaN Nano/Microstructures[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2008(22):10325-10329.
[16] 梁建,王晓宁,张华,刘海瑞,王晓斌,许并社.Zn掺杂Z形GaN纳米线的制备及表征[J].人工晶体学报,2012(01):36-41,46.
[17] Hersee SD;Sun XY;Wang X .The controlled growth of GaN nanowires[J].Nano letters,2006(8):1808-1811.
[18] Han-Kyu Seong;Hannah Jeong;Ryong Ha .Growth and Optical Properties of Gallium Nitride Nanowires Produced via Different Routes[J].Metals and Materials International,2008(3):353-356.
[19] 翟化松,余春燕,高昂,姜武,王坤鹏,许并社.不同金属缓冲层对GaN薄膜的光学及电学性能的影响[J].无机化学学报,2014(03):597-602.
[20] 赖天树,王嘉辉,张莉莉,林位株.GaN薄膜的蓝光和红光发射机理研究[J].光学学报,2003(12):1493-1496.
[21] H.Zhu;C.X.Shan;B.Yao .High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(51):20546-20548.
[22] Zhang GY;Tong YZ;Yang ZJ;Jin SX;Li J;Gan ZZ .Relationship of background carrier concentration and defects in GaN grown by metalorganic vapor phase epitaxy[J].Applied physics letters,1997(23):3376-3378.
[23] 封飞飞,刘军林,邱冲,王光绪,江凤益.硅衬底GaN基LED N极性n型欧姆接触研究[J].物理学报,2010(08):5706-5709.
[24] Ag作催化剂制备的GaN的形貌及其性能[J].无机化学学报,2013(01):63-68.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%