欢迎登录材料期刊网

材料期刊网

高级检索

以钨酸钠和氯化钠为原料,采用水热法在硅基多孔硅上原位生长WO3纳米棒薄膜,制成p型多孔硅基-n型WO3复合结构气敏传感器.为了获得最大比表面积的复合形貌,详细研究了水热反应时间和温度对多孔硅基WO3复合结构显微组织表面形貌的影响.利用扫描电镜、粉末衍射等表征手段测试并分析了多孔硅基表面WO3纳米棒薄膜的形貌以及晶体结构,并测试了复合结构传感器在不同工作温度下的气敏响应特性,结果表明:该气敏传感器在室温下便对有毒气体NO2具有高灵敏度以及稳定的重复性.

参考文献

[1] Lee YL.;Chang CH.;Yang YM.;Tsai WC..Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20013/4(3/4):191-199.
[2] Lee JH;Kim J;Seo HW;Song JW;Lee ES;Won M;Han CS.Bias modulated highly sensitive NO2 gas detection using carbon nanotubes[J].Sensors and Actuators, B. Chemical,20082(2):628-631.
[3] Byeong-Guk Kim;Dong-Gun Lim;Jae-Hwan Park;Young-Jin Choi;Jae-Gwan Park.In-situ bridging of SnO_2 nanowires between the electrodes and their NO_2 gas sensing characteristics[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201110(10):4715-4718.
[4] You, L.;Sun, Y.F.;Ma, J.;Guan, Y.;Sun, J.M.;Du, Y.;Lu, G.Y..Highly sensitive NO_2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment[J].Sensors and Actuators, B. Chemical,20112(2):401-407.
[5] Wongchoosuk, C.;Wisitsoraat, A.;Phokharatkul, D.;Horprathum, M.;Tuantranont, A.;Kerdcharoen, T..Carbon doped tungsten oxide nanorods NO_2 sensor prepared by glancing angle RF sputtering[J].Sensors and Actuators, B. Chemical,2013:388-394.
[6] Dongyun Ma;Guoying Shi;Hongzhi Wang.Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,20133(3):684-691.
[7] Shankara Sharanappa Kalanur;Yun Jeong Hwang;Sang Youn Chae.Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201310(10):3479-3488.
[8] Zeng, J.;Hu, M.;Wang, W.;Chen, H.;Qin, Y..NO _2-sensing properties of porous WO _3 gas sensor based on anodized sputtered tungsten thin film[J].Sensors and Actuators, B. Chemical,20121(1):447-452.
[9] Qin, Y.;Hu, M.;Zhang, J..Microstructure characterization and NO_2-sensing properties of tungsten oxide nanostructures[J].Sensors and Actuators, B. Chemical,20101(1):339-345.
[10] Choi, S.-W.;Katoch, A.;Sun, G.-J.;Kim, S.S..Synthesis and gas sensing performance of ZnO-SnO_2 nanofiber-nanowire stem-branch heterostructure[J].Sensors and Actuators, B. Chemical,2013:787-794.
[11] Lyson-Sypien, B.;Czapla, A.;Lubecka, M.;Kusior, E.;Zakrzewska, K.;Radecka, M.;Kusior, A.;Balogh, A.G.;Lauterbach, S.;Kleebe, H.-J..Gas sensing properties of TiO_2-SnO_2 nanomaterials[J].Sensors and Actuators, B. Chemical,2013:445-454.
[12] Shao, F.;Hoffmann, M.W.G.;Prades, J.D.;Zamani, R.;Arbiol, J.;Morante, J.R.;Varechkina, E.;Rumyantseva, M.;Gaskov, A.;Giebelhaus, I.;Fischer, T.;Mathur, S.;Hernández-Ramírez, F..Heterostructured p-CuO (nanoparticle)/n-SnO_2 (nanowire) devices for selective H_2S detection[J].Sensors and Actuators, B. Chemical,2013:130-135.
[13] Sharma, A.;Tomar, M.;Gupta, V..Enhanced response characteristics of SnO_2 thin film based NO_2 gas sensor integrated with nanoscaled metal oxide clusters[J].Sensors and Actuators, B. Chemical,2013:735-742.
[14] Shuangyun Ma;Ming Hu;Peng Zeng;Wenjun Yan;Mingda Li.Growth of tungsten oxide nanorods onto porous silicon and their sensing properties for NO_2[J].Materials Letters,2013May 15(May 15):57-60.
[15] Lee, JH.Gas sensors using hierarchical and hollow oxide nanostructures: Overview[J].Sensors and Actuators, B. Chemical,20091(1):319-336.
[16] Wu Ya-Qiao;Hu Ming;Wei Xiao-Ying.A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor[J].中国物理B(英文版),2014(4):208-214.
[17] 武雅乔 .多孔硅基/一维金属氧化物复合结构的制备与气敏性能研究[D].天津大学,2014.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%