欢迎登录材料期刊网

材料期刊网

高级检索

采用完全热力耦合模型,通过跟踪物质点的真实应变分量计算Zener-Hollomon参数,并由此计算搅拌区内的焊后晶粒尺寸。结果表明:热力影响区和搅拌区边界可以通过材料流动的不同行为进行界定;搅拌区随搅拌针直径的增加而增加,同时热力影响区变窄;在搅拌区域内,应变率对最终晶粒尺寸有明显影响;靠近搅拌针的材料,在快速绕针流动与旋推的作用下,经历了较大的应变率,最终得到较为细小的材料晶粒。

Fully coupled thermo-mechanical model was used to calculate the Zener-Hollomon parameter based on the obtained true strain components of the traced particles. The grain sizes in the stirring zone were then computed. Results indicate that the boundaries of the stirring zone and the thermo-mechanical affected zone can be determined by the different material flows. The size of the stirring zone increases with the increase of the pin diameter and the size of the thermo-mechanical affected zone decreases simultaneously. The material near the welding pin rotates and flows rapidly around the pin,thus higher strain rates can be obtained in this region and lead to smaller final grain size.

参考文献

[1] Arora, H.S.;Singh, H.;Dhindaw, B.K..Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:231-242.
[2] 张昭,别俊.搅拌摩擦焊接过程数值仿真的完全热力耦合模型[J].中国机械工程,2008(10):1240-1245.
[3] 张昭,刘亚丽,陈金涛,张洪武.搅拌摩擦焊接过程中材料流动形式[J].焊接学报,2007(11):17-21.
[4] Olivier Lorrain;Veronique Favier;Hamid Zahrouni;Didier Lawrjaniec .Understanding the material flow path of friction stir welding process using unthreaded tools[J].Journal of Materials Processing Technology,2010(4):603-609.
[5] 姬书得,孟庆国,史清宇,张利国,邹爱丽.搅拌针形状影响搅拌摩擦焊过程金属塑性流动规律的数值模拟[J].焊接学报,2013(02):93-96.
[6] P. Michaleris .Modelling welding residual stress and distortion: current and future research trends[J].Science and Technology of Welding and Joining,2011(4):363-368.
[7] 张正伟,张昭,张洪武.搅拌摩擦焊接残余应力及残余变形数值分析[J].计算力学学报,2013(z1):16-21.
[8] Basil M. Darras .A Model to Predict the Resulting Grain Size of Friction-Stir-Processed AZ31 Magnesium Alloy[J].Journal of Materials Engineering and Performance,2012(7):1243-1248.
[9] J. D. Robson;L. Campbell .Model for grain evolution during friction stir welding of aluminium alloys[J].Science and Technology of Welding and Joining,2010(2):171-176.
[10] A. Arora;Z. Zhang;A. De .Strains and strain rates during friction stir welding[J].Scripta materialia,2009(9):863-866.
[11] Chang CI;Lee CJ;Huang JC .Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J].Scripta materialia,2004(6):509-514.
[12] G. Buffa;L. Fratini;R. Shivpuri .CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches[J].Journal of Materials Processing Technology,2007(1/3):356-359.
[13] 张昭,张洪武.搅拌摩擦焊中动态再结晶及硬度分布的数值模拟[J].金属学报,2006(09):998-1002.
[14] 张昭,刘亚丽.预热时间对搅拌摩擦焊接的影响[J].机械工程学报,2009(04):13-18,24.
[15] A. GERLICH;M. YAMAMOTO;T.H. NORTH .Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2007(6):1291-1302.
[16] Kim S;Lee CG;Kim SJ .Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):56-64.
[17] Asgharzadeh, H.;Simchi, A.;Kim, H.S..Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:56-63.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%