欢迎登录材料期刊网

材料期刊网

高级检索

从铜冷却壁引进到目前的短短十几年间,中国大于1 000m3的高炉,在炉腰炉腹和炉身下部已普遍使用铜冷却壁。由于使用时间短,铜冷却壁热面裸露和结瘤频繁,严重影响生产。企业迫切需要知道何种操作因素控制铜冷却壁的渣皮脱落。目前,一些钢厂通过调整冷却水量和冷却水温度来实现挂渣稳定性和挂渣厚度控制,但往往收效甚微,为此建立了炉墙传热数学模型。研究结果表明:在适当范围内,调节水温或水速对挂渣厚度影响甚微;影响挂渣厚度最主要的因素是边缘煤气温度和冷却壁热负荷;根据铜冷却壁边缘煤气流对挂渣厚度的影响,将其分成剧变区、渐变区、缓变区和微变区。鞍钢,唐钢,武钢等钢厂高炉生产实践证实了上述结果的正确性。研究结果澄清了影响铜冷却壁挂渣厚度的一些模糊认识,对铜冷却壁高炉生产有重要的指导意义。以炉墙传热模型为基础开发的挂渣厚度在线监测系统已成功应用于国内某钢厂高炉,并经过实测检验,为铜冷却壁操作提出了35~58kW/m2的热负荷控制标准。

A decade more from copper stave introduced form abroad to now, it has been widely used on bosh, belly as well as under shaft of blast furnace larger than 1000 m3 in China. Because of short time use, phenomena of naked or scaffolding on copper stave hot face happened occasionally which had serious influence on production. Enterprises urgently need to know what operational factors restricted the accretion~s remove on copper stave. Some steel compa- nies adjusted cooling water flow rate and temperature, which had little work frequently, to realize forming-accretion thickness and stability control. The heat transfer mathematic model of furnace wall shows as follows: the forming- accretion thickness change little which indicates that adjusting water speed and temperature in certain range has little effect on forming-accretion thickness~ the leading influencing factors are peripheral gas flow temperature and cooling stave heat flux;according to effect of peripheral gas flow on forming-accretion thickness of copper stave, peripheral gas flow temperature is divided into rapid change area, gradual change area, slowly change area and the subtle change area. Blast furnace production practice in Ansteel, Tangsteel as well as Wusteel confirmed the correctness of the results above. Researching results clear up some vague realization of affecting forming-accretion thickness, which has important instruction meaning to copper stave blast furnace production. Forming-accretion morning sys- tem developed on the basis of heat transfer mathematic model of furnace wall, which has tested by actual measure- ment, has been applied to a blast furnace in certain civil steel company, and heat load control standard of 35-58 kW/ m2 has been suggested for copper stave operation.

参考文献

[1] Cheng Shusen;Xue Qingguo;Yang Tianjun et al.Tempera- ture Field of Lining and Cooling Apparatus[J].Journal of University of Science and Technology Beijing,2000,7(01):30.
[2] Shusen Cheng,Tianjun Yang,Qingguo Xue,Haibin Zuo,Xiaowu Gao,Weiguo Yang.Optimum design and layout of the cooling apparatus for long compaignship blast furnace[J].北京科技大学学报(英文版),2003(04):24-28.
[3] Joachim Janz;Dietmar Lucke;Ian Carmichael .Installation of Copper Staves in Blast Furnace Hearths and Their Influence on Refractory Design[J].AISE Steel Technology,2003(5):42-51.
[4] Luc Bonte;Heli DeLanghe;Bert Speleers;Maarten Depamelaere .Installing copper staves and blast furnace operating practice at sidmar[J].Iron & Steel Review,1999(6):43-50.
[5] Miller K.;Baylis M. .Cast Copper Staves-An Economic Alternative[J].Iron & Steelmaker,2000(9):67-74.
[6] 钱亮,程素森.陶瓷垫对高炉炉底抗侵蚀能力的研究[J].钢铁,2005(11):16-20.
[7] 钱亮,程素森.高炉铜冷却壁自保护能力的实现[J].北京科技大学学报,2006(11):1052-1057.
[8] 何小平;杨志荣;吴桐.太钢3号高炉铜冷却壁"自保护”能力的研究[A].山西太原,2009
[9] CHENG Su-sen,QIAN Liang,ZHAO Hong-bo.Monitoring Method for Blast Furnace Wall With Copper Staves[J].钢铁研究学报(英文版),2007(04):1-5.
[10] 钱亮,程素森,李维广,沈海波,张劲草.铜冷却壁炉墙内型管理传热学反问题模型[J].炼铁,2006(02):18-22.
[11] 武振宇;黄建明;刘洪新.唐钢1号高炉铜冷却壁操作实践[J].炼铁技术通讯,2009(01):31.
[12] 杨佳龙,潘协田.武钢1号高炉铜冷却壁薄炉衬操作特点[J].炼铁,2004(03):3-6.
[13] 王宝海,张洪宇,车玉满.鞍钢铜冷却壁高炉的热负荷管理[J].炼铁,2008(02):1-4.
[14] 王竹民,吕庆,李福民,张淑会.邯钢高炉渣的熔化性能[J].钢铁研究学报,2009(05):59-62.
[15] Robert G. Helenbrook;Wolfgang Kowalski;Klaus-Henning Grosspietsch;Hartmut Hille .Copper staves in the blast furnace[J].Iron and Steel Engineer,1996(8):30-34.
[16] Qian Liang;Cheng Susen;Zhao Hongbo .Quantificational In- dexes for Design and Evaluation of Copper Staves for Blast Furnaces[J].Journal of University of Science and Technology Beijing Mineral Metallurgy Material,2008,2(15):10.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%