欢迎登录材料期刊网

材料期刊网

高级检索

利用往复挤压在300~360℃细化铸态Mg-6Zn-1Y-1Ce合金组织,研究其组织演变和挤压参数对再结晶组织的影响。结果表明:往复挤压合金横截面边缘存在不均匀环,由靠近筒壁的细晶环和粗晶环组成,其宽度随着挤压温度提高而减小;细晶环是由边缘区域与挤压筒壁摩擦而发生第二轮再结晶所致,粗晶环是由再结晶晶粒长大所致;合金晶粒度由变形速率和温度决定,经340℃挤压合金晶粒最细,平均粒径8.2μm。除边缘外,往复挤压过程中合金在挤压阶段发生一次再结晶,墩粗过程和后续多道次挤压变形都是通过晶界滑移实现。因此,随着挤压道次的增加,保温时间随之延长,晶粒随之被粗化。

The microstructure of as-cast Mg-6Zn-1Y-1Ce alloy was refined by reciprocating extrusion (REX) at the temperature range of 300?360℃, the microstructural evolution and the effect of extrusion parameters on recrystallized microstructure were investigated. The results show that the as-REXed alloys have an inhomogeneous ring on cross section, which consists of a fine-grain ring and a coarse-grain ring on the periphery. The width of the ring decreases with increasing the extrusion temperature. The fine-grain ring is attributed to the secondary recrystallization occurring because of friction between the periphery of sample and container wall, the coarse-grain ring is attributed to grain growth followed recrystallization. The grain size of REXed alloy is determined by deformation rate and temperature, a minimum grain size of 8.2 μm is obtained at 340 ℃. During REX process, recrystallization occurs only once during extrusion except for the periphery, the deformation processes during upsetting and subsequent multi-pass REX are achieved by grain boundary sliding. Therefore, with increasing REX passes, the holding-time is prolonged and grains coarsen.

参考文献

[1] Ifeanyi Anthony Anyanwu;Yasuhiro Gokan;Shuuhei Nozawa .Heat Resistant Magnesium Alloys for Automotive Powertrain Applications[J].Materials Science Forum,2003(Pt.1):445-450.
[2] FROES F .Advanced metals for aerospace and automotive use[J].Materials Science and Engineering A,1994,184(02):119-133.
[3] FRIEDRICH H E;MORDIKE B L.Magnesium technology:Metallurgy,design data,applications[M].Berlin Heidelberg:Springer Verlag,2006:144-218.
[4] 余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003(02):277-288.
[5] J. ZRNIK;S. V. DOBATKIN;I. MAMUZIC .PROCESSING OF METALS BY SEVERE PLASTIC DEFORMATION (SPD)--STRUCTURE AND MECHANICAL PROPERTIES RESPOND[J].Metalurgija,2008(3):211-216.
[6] X. F. Guo;D. Shechtman .Reciprocating extrusion of rapidly solidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy[J].Journal of Materials Processing Technology,2007(0):640-644.
[7] 郭学锋,杨文朋,宋佩维.往复挤压Mg-4Al-2Si合金的高温拉伸性能[J].中国有色金属学报,2010(06):1032-1038.
[8] Shih-Wei Lee;Yu-Liang Chen;Hsiao-Yun Wang;Chih-Fu Yang;Jien-Wei Yeh .On mechanical properties and superplasticity of Mg-15Al-1Zn alloys processed by reciprocating extrusion[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):76-84.
[9] Y.J. Chen;Q.D. Wang;H.J. Roven .Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression[J].Scripta materialia,2008(4):311-314.
[10] YANG Wenpeng,GUO Xuefeng.A High Strength Mg-6Zn-1Y-1Ce Alloy Prepared by Hot Extrusion[J].武汉理工大学学报(材料科学版)(英文版),2013(02):389-395.
[11] DIETER G E.Mechanical metallurgy[M].Singapore:McGraw-Hill Book Company,1988:625-629.
[12] JIANG T;GUO X F;MA G .Microstructures and properties of reciprocating extruded as-cast ZK60 magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2007,17(z1):s396-s399.
[13] Jinbao Lin;Qudong Wang;Liming Peng .Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):441-445.
[14] 徐春杰,郭学锋,郑水云,张忠明.往复挤压高韧Mg-Zn-Y合金[J].材料工程,2007(07):16-20,32.
[15] T. Al-Samman;X. Li;S. Ghosh Chowdhury .Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(15):3450-3463.
[16] J. A. del Valle;M. T. Perez-Prado;O. A. Ruano .Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):68-78.
[17] 叶永南,刘君,郭学锋,徐春杰,张忠明.热力耦合数值模拟往复挤压AZ31成形过程[J].兵器材料科学与工程,2007(06):10-13.
[18] 郭学锋.细晶镁合金制备方法及组织与性能[M].北京:冶金工业出版社,2010:263-265.
[19] V.N. Chuvil'deev;T.G. Nieh;M.Yu. Gryaznov .Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2004(1/2):253-257.
[20] A. Bussiba;A. Ben Artzy;A. Shtechman;S. Ifergan;M. Kupiec .Grain refinement of AZ31 and ZK60 Mg alloys — towards superplasticity studies[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1):56-62.
[21] T. Chen;F. A. Mohamed;M. L. Mecartney .Threshold stress superplastic behavior and dislocation activity in a three-phase alumina-zirconia-mullite composite[J].Acta materialia,2006(17):4415-4426.
[22] 毛卫民.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:56-69.
[23] ZENER C;HOLLOMON J H .Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(01):22-32.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%