欢迎登录材料期刊网

材料期刊网

高级检索

采用循环伏安沉积法在 TiO2纳米管表面构筑了石墨烯和 CdSe,其中 TiO2纳米管是由阳极氧化法制备而成。通过扫描电镜(SEM)及能谱(EDS)、X 射线衍射分析(XRD)和紫外可见漫反射吸收光谱(UV-vis DRS)等测试方法观察了复合膜的表面形貌、晶型和光响应特征;通过测试可见光照射前后电极的开路电位(OCP)、电化学阻抗谱(EIS)等研究了复合膜对304不锈钢的阴极保护效果。结果表明,锐钛矿相的 TiO2纳米管阵列膜排列紧密,孔径约为30~60 nm;石墨烯和立方晶相的 CdSe 均匀地覆盖在 TiO2膜表面,在纳米管口与管壁均有分布;可见光照射下,与复合膜耦合的304不锈钢的电位可以从-180 mV 降至-900 mV(SCE),与纯 TiO2相比,电位更负。另外,切断电源后,复合膜能够对不锈钢起到延时保护作用并达到12 h 以上,这说明复合膜能够有效地解决暗态下 TiO2光生电子空穴对易复合的问题,改进 TiO2对304不锈钢的光生阴极保护效果。

The composite of CdSe/graphene/TiO2 nanotube film was fabricated by cyclic voltammetric deposition of graphene and CdSe on the surface of TiO2 prepared by anodic oxidation process.The composite was characterized by scanning electron microscopy (SEM)and energy-dispersive X-ray spectroscopy (EDS),X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS).The photocathodic protection properties of the composite for 304 stainless steel were examined by the open circuit potential (OCP)and electrochemical impedance spectroscopy (EIS).It′s shown that the anatase TiO2 nanotube films were arranged closely and the diameter ranged from 30 to 60 nm.Graphene and cubic CdSe covered the TiO2 evenly and distributed on the mouth and walls of the nanotube arrays.Under visible light illumination,the OCP of the 304 stainless steel coupled with the composite film dropped from -180 mV to -900 mV (SCE).Compared with pure TiO2 ,the photopotential of the composite film was more negative.When the light was cut off,the photocathodic protection of the composite could maintain more than 12 h.It indicates that this can solve the recombination of photoinduced electrons and holes within the TiO2 film.

参考文献

[1] Yuan JN.;Tsujikawa S. .CHARACTERIZATION OF SOL-GEL-DERIVED TIO2 COATINGS AND THEIR PHOTOEFFECTS ON COPPER SUBSTRATES[J].Journal of the Electrochemical Society,1995(10):3444-3450.
[2] YUAN J N;TAUJIKAWA S .Photopotentials of cop-per coated with TiO2 by sol-gel method[J].Corrosion Engineering,1994,43(8):433-440.
[3] G.X. Shen;Y.C. Chen;C.J. Lin .Corrosion protection of 316 L stainless steel by a TiO_2 nanoparticle coating prepared by sol-gel method[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2005(1/2):130-136.
[4] Yoshihisa Ohko;Shuichi Saitoh;Tetsu Tatsuma;Akira Fujishima .Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO_2 Coating for Type 304 Stainless Steel[J].Journal of the Electrochemical Society,2001(1):B24-B28.
[5] Hongyi Li;Xinde Bai;Yunhan Ling .Fabrication of Titania Nanotubes as Cathode Protection for Stainless Steel[J].Electrochemical and solid-state letters,2006(5):B28-B31.
[6] FUJISAWA R;TSUJIKAWA S .Photo-protection of 304 stainless steel with TiO2 coating[J].Passivation of Metals and Semiconductors,1995,185:1075-1081.
[7] C.X. Lei;H. Zhou;Z.D. Feng.Effect of liquid-phase-deposited parameters on the photogenerated cathodic protection properties of TiO_2 films[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2012:164-169.
[8] PARK H;KIM K Y;CHOI W .Photoelectrochemical approach for metal corrosion prevention using a semi-conductor photoanode[J].Journal of Physical Chemis-try B,2002,106(18):4775-4781.
[9] TAFEN D N;LONG R;PREZHDO O V .Dimension-ality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparti-cle[J].NANO LETTERS,2014,14(4):1790-1796.
[10] Yasser Hassan;Chi-Hung Chuang;Yoichi Kobayashi .Synthesis and Optical Properties of Linker-Free TiO2/CdSe Nanorods[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2014(6):3347-3358.
[11] Lili Su;Jun Lv;Honge Wang .Improved Visible Light Photocatalytic Activity of CdSe Modified TiO2 Nanotube Arrays with Different Intertube Spaces[J].Catalysis Letters,2014(4):553-560.
[12] Istvan Robel;Vaidyanathan Subramanian;Masaru Kuno;Prashant V.Kamat .Quantum Dot Solar Cells.Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO_2 Films[J].Journal of the American Chemical Society,2006(7):2385-2393.
[13] Kim, SR;Parvez, MK;Chhowalla, M .UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J].Chemical Physics Letters,2009(1/3):124-127.
[14] BRENNAN L J;BYRNE M T;BARI M et al.Car-bon nanomaterials for dye-sensitized solar cell applica-tions:A bright future[J].Advanced Engineering Ma-terials,2011,1:472-485.
[15] Stankovich S;Dikin DA;Dommett GHB;Kohlhaas KM;Zimney EJ;Stach EA;Piner RD;Nguyen ST;Ruoff RS .Graphene-based composite materials[J].Nature,2006(7100):282-286.
[16] Xiangqin Guo;Wei Liu;Lixin Cao;Ge Su;Hongmei Xu;Binhao Liu .Graphene incorporated nanocrystalline TiO_2 films for the photocathodic protection of 304 stainless steel[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013(Oct.15):498-504.
[17] HUMMERS W S;OFFEMAN R E .Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
[18] Na Li;Gang Liu;Chao Zhen;Feng Li;Lili Zhang;Hui-Ming Cheng .Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO_2 Nanospheres/Graphene Composites by Template-Free Self-Assembly[J].Advanced functional materials,2011(9):1717-1722.
[19] Zhao, Y.;Zhao, D.;Chen, C.;Wang, X..Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO_2 nanoparticles[J].Journal of Colloid and Interface Science,2013:211-217.
[20] 李立群,刘爱萍,赵海新,崔灿,唐为华.TiO2/CdSe多层膜结构的制备及光电化学性能研究[J].物理学报,2012(10):479-484.
[21] 张含平,林原,周晓文,王正平,张宝宏.CdSe纳晶薄膜电极的制备及其光电性能研究[J].化工新型材料,2006(11):17-19.
[22] GHOSH T;CHO K Y;ULLAH K et al.High pho-tonic effect of organic dye degradation by CdSe-Gra-phene-TiO2 particles[J].Journal of Industrial and Engineering Chemistry,2013,19(3):797-805.
[23] SPAGNOL V;SUTTER E;DEBIEMME-CHOUCVY C et al.EIS study of photo-induced modifications of nano-columnar TiO2 films[J].Electrochimica Acta,2009,54(4):1228-1232.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%