欢迎登录材料期刊网

材料期刊网

高级检索

通过Ni、W、P和CeO2、SiO2纳米颗粒的脉冲共沉积,在普通碳钢表面制各了Ni-W-P-CeO2-SiO2纳米复合镀层,研究了机械搅拌速度对纳米复合镀层微观组织及性能的影响,采用化学组成、元素分布、沉积速率、显微硬度和微观组织进行表征.结果表明:当机械搅拌速度控制在1000 r/min时,纳米复合材料微观组织致密,基质金属轮廓清晰,晶粒较细,纳米颗粒以弥散态均匀分布在基质金属中.同时,元素线扫描和面扫描分析表明,W、P、Si和Ce的平均含量非常接近,说明元素在纳米复合镀层中的分布是均匀的.提高机械搅拌速度,纳米复合镀层晶粒得到细化,沉积速率和显微硬度增加,当机械搅拌速度提高到1000 r/min时,沉积速率(32.68μm/h)和显微硬度(6820 MPa)最高.继续提高机械搅拌速度,纳米复合镀层晶粒尺寸反而增加,沉积速率和显微硬度降低.

Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of Ni,W,P,nano-CeO2 and nano-SiO2 particles.The effects of mechanical stirring velocity on microstructures and properties of the nano-composite coatings were researched; the characteristics were assessed by chemical compositions,element distribution,deposition rate,microhardness and microstructure.The results indicate that when the mechanical stirring velocity is controlled at 1000 r/min,the nano-composite coatings possess compact microstructure,clear outline of spherical matrix metal crystallite,fine crystal size and uniform distribution of the nano particles in the dispersion state within matrix metal.Meanwhile,element line scanning and scanning analysis shows that the average contents of elements W,P,Si and Ce in the composite coatings are close,displaying that the distribution of every element within the composites is very uniform.Increasing mechanical stirring velocity leads to refinement in grain structure and the corresponding increase of the deposition rate and the microhardness.When it is increased to 1000 r/min,the deposition rate with 32.68 μm/h and the microhardness with 682Hv are highest respectively.After that,the deposition rate and the microhardness will decrease if it increases continually.

参考文献

[1] Xu Ruidong;Gun Zhongchen;Wang Junli .[J].Transactions of Nonferrous Metals Society of China,2005,15(03):425.
[2] 蒋斌,徐滨士,董世运,王红美.纳米复合镀层的研究现状[J].材料保护,2002(06):1-3.
[3] 王为,郭鹤桐.纳米复合镀技术[J].化学通报,2003(03):178-183.
[4] 彭元芳,曾振欧,赵国鹏,刘建平.电沉积纳米复合镀层的研究现状[J].电镀与涂饰,2002(06):17-21.
[5] 赵晓兵;陈志刚 .[J].江苏大学学报(自然科学版),2003,23(04):52.
[6] Richoux V;Diliberto S;Boulanger C et al.[J].Electrochimica Acta,2007,52(09):3053.
[7] Dong J K;Yu M R;Moo H S et al.[J].Surface and Coatings Technology,2005,192(01):88.
[8] Zimmerman A F;Clark D G;Aust K T et al.[J].Materials Letters,2002,52(1-2):85.
[9] Mishra R;Balasubramaniam R .[J].Corrosion Sciences,2004,46(12):3019.
[10] Kollia c;Spyrellis N .[J].Surface and Coatings Technology,1993,57(01):71.
[11] El-Sherik A M;Erb U .[J].Plating and Surface Finishing,1995,82(09):85.
[12] Zhitomirsky .[J].Materials Leuers,2004,58:420.
[13] Wang Z;Shemilt J;Xiao P .[J].Scripta Materialia,2000,42(07):653.
[14] Marco Musiani .Electrodeposition of composites: an expanding subject in electrochemical materials science[J].Electrochimica Acta,2000(20):3397-3402.
[15] 黄令,董俊修,杨防祖,许书楷,周绍民.镍-钨合金电沉积层结构与显微硬度的研究[J].材料保护,1999(10):18-19.
[16] 朱诚意,郭忠诚.稀土对电沉积Ni-W-B-SiC复合镀层组织结构及性能的影响[J].化工冶金,1999(03):225-228.
[17] KARTHIKEYAN S,SRINIVASAN K N,VASUDEVAN T,JOHN S.化学镀Ni-P-Cr2O3和Ni-P-SiO2复合镀层的研究[J].电镀与涂饰,2007(01):1-6.
[18] 曹铁华,成旦红,桑付明,袁蓉,徐伟一.脉冲复合电镀(Ni-P)-纳米微粒SiO2工艺[J].电镀与精饰,2004(06):27-30.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%