欢迎登录材料期刊网

材料期刊网

高级检索

研究了一种无铼镍基单晶高温合金在1223K、不同应变速率(5×10-4s-1、1×10-3s-1、5×10-3s-1,1×10-2s-1)条件下的低周疲劳行为.结果表明:在四种应变速率条件下,合金均表现出循环稳定.随着应变速率的增加,合金的疲劳寿命逐渐增加,且其半寿命稳定滞后回线环内面积逐渐减少,表明低应变速率合金更容易积累蠕变塑性变形.疲劳裂纹源均萌生于试样表面,随着应变速率的增加,疲劳过程中产生的塑性变形越来越少,疲劳裂纹扩展区的面积逐渐增大.低应变速率时,较大的塑性变形导致合金取向发生明显的偏转,诱发多滑移系开动进而形成位错网;反之,高应变速率时,合金没有产生明显的塑性变形,只有单一方向的位错塞积形成位错束.

参考文献

[1] D.W.Maclachlan,D.M.Knowles,Fatigue behaviour and lifing of two single crystal superalloys,Fatigue Fract.Eng.Mater.Struct.,24,503(2001)
[2] R.C.Reed,The Superalloys Fundamentals and Applications (New York,Cambridge University Press,2006)p.170-194
[3] JIA Yuxian,JIN Tao,LIU Jinlai,SUN Xiaofeng,HU Zhuangqi,Anisotropic creep in a Ni-based single crystal superalloy,Acta Metallurgica Sinica,45(11),1364(2009)(贾玉贤,金涛,刘金来,孙晓峰,胡壮麒,一种镍基单晶高温合金的各向异性,金属学报,45(11),1364(2009))
[4] TIAN Sugui,ZHOU Huihua,ZHANG Jinghua,YANG Hongcai,XU Yongbo,HU Zhuangqi,Formation and role of dialocation networks for a single crystal nickel-base superalloy during high temperature creep,Chinese Journal of Materials Research,13(6),632(1999)(田素贵,周慧华,张静华,杨洪才,徐永波,胡壮麒,一种单晶镍基合金蠕变期间位错网的形成与作用,材料研究学报,13(6)632(1999))
[5] J.Z.Yi,C.J.Torbet,Q.Feng,Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 ℃,Mater.Sci.Eng.,A443,142(2007)
[6] H.Zhou,Y.Ro,H.Harada,Y.Aoki,M.Arai,Deformation microstructure after low-cycle fatigue in a fourthgeneration Ni-base SC superalloy TMS-138,Mater.Sci.Eng.,A381,20(2004)
[7] X.F.Ma, H.J.Shi,J.L.Gu, Z.X.Wang, H.Harders,T.Malow, Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy,Acta.Mech.Solida.Sin.,21(4),289(2008)
[8] J.Telesman,L.J.Ghosn,Fatigue crack growth behavior of PWA1484 single crystal superalloy at elevated temperatures,J.Eng.Gas.Turb.Power.,118,399(1996)
[9] B.F.Antolovich,A.Saxena,S.D.Antolovich,Fatigue crack propagation in single crystal CMSX-2 at elevated temperature,J.Mater.Eng.Perform.,2,489(1993)
[10] Z.F.Yue,Z.Z.Lu,The influence of crystallographic orientation and strain rate on the high-temperature low-cyclic fatigue property of a nickel-base single-crystal superalloy,Matall.Mater.Trans.,A,29A,1093(1998)
[11] E.Fleury,L.Pémy,Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature,Mater.Sci.Eng.,A167,23(1993)
[12] V.Brien,B.Décamps,Low cycle fatigue of a nickel based superalloy at high temperature:deformation microstructures,Mater.Sci.Eng.,A316,18(2001)
[13] J.J.Yu,X.F.Sun,T.Jin,N.R.Zhao,H.R.Guan,Z.Q.Hu,High temperature creep and low cycle fatigue of a nickelbase superalloy,Mater.Sci.Eng.,A527,2379(2010)
[14] G.A.Leverant,M.Gell,The influence of temperature and cyclic frequency on the fatigue fracture of cube orientated nickel-base superalloy single crystal,Metall. Trans. A,6A,367(1975)
[15] C.Laird,The influence of metallurgical structure on the mechanisms of fatigue crack propagation,Fatigue crack propagation,ASTM STP 415,Philadelphia,131(1967)
[16] D.Wang,Investigation of microstructure and creep mechanism of two directionally solidified Ni-base superalloys,Ph.D Dissertation,Institute of Metal Research Chinese Academy of Sciences(2010)(王栋,两种定向凝固单晶高温合金微观组织和蠕变机制的研究,博士学位论文,中国科学院金属研究所(2010))
[17] J.H.Zhang, Z.Q.Hu, Y.B.Xu, Z.G.Wang, Dislocation structure in a single-crystal nickle-base superalloy during low cycle fatigue,Metall.Trans.A,23A,1253(1992)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%