欢迎登录材料期刊网

材料期刊网

高级检索

利用光学显微镜、X射线衍射仪、扫描电镜及能谱仪和冲击试验研究了运行了8000 h的1000 MW超超临界机组主蒸汽管道P92钢的显微组织和韧性.结果表明,主蒸汽管道P92钢在600℃服役8000 h后,显微组织呈现大量析出相分布于马氏体基体之上的形貌,析出相除了供货状态(正火+高温回火)存在的MX相以及M23 C6相之外,还有时效后在原奥氏体晶界和马氏体板条界处产生的Laves相;运行8000 h后,P92钢的韧性明显地下降,这主要与Laves相的析出和粗化有关.

参考文献

[1] 唐飞,董斌,赵敏.超超临界机组在我国的发展及应用[J].电力建设,2010(01):80-82.
[2] 徐通模,袁益超,陈干锦,邵国桢.超大容量超超临界锅炉的发展趋势[J].动力工程,2003(03):2363-2369.
[3] 杨富;章应霖;任永宁.新型耐热钢焊接[M].北京:中国电力出版社,2006
[4] Lomozik M;Zeman M;Br6zda J .Modern martensitic steels for power industry[J].Archives of Civil and Mechanical Engineering,2012,12(01):49-59.
[5] J. C. Vaillant;B. Vandenberghe;B. Hahn;H. Heuser;C. Jochum .T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants - Properties and experience[J].International Journal of Pressure Vessels and Piping,2008(1/2):38-46.
[6] Kim B;Jeong C;Lim B .Creep behavior and microstructural damage of martensitic P92 steel weldment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):544-546.
[7] 彭志方,蔡黎胜,彭芳芳,胡永平,陈方玉.P92钢625℃持久性能分段特征与各段中M_(23)C_6及Laves相相参数的定量变化研究[J].金属学报,2010(04):429-434.
[8] 王学,潘乾刚,陈方玉,陶永顺,彭芳芳.P92钢高温蠕变损伤分析[J].材料热处理学报,2010(02):65-69.
[9] C. Petry;G. Lindet .Modelling creep behaviour and failure of 9Cr-0.5Mo-1.8W-VNb steel[J].International Journal of Pressure Vessels and Piping,2009(8):486-494.
[10] 殷尊,蔡晖,刘鸿国.1000MW超超临界机组用P92耐热钢高温服役后的性能[J].材料热处理学报,2012(11):105-110.
[11] 李玲霞,刘正东,赵晓丽,李南,王春芳.P92耐热钢物理化学相分析[J].冶金分析,2013(02):1-7.
[12] Abe F .Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants[J].SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS,2008,9(01):13002-13016.
[13] Guo, X.;Gong, J.;Jiang, Y.;Rong, D..The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:199-205.
[14] H(a)ttestrand M;Andren H-O .Evaluation of particle size distributions of precipitates in a 9% chromium steel using energy filtered transmission electron microscopy[J].MICRON,2001,32(08):789-797.
[15] 姜筠,朱丽慧,王延峰.P92钢高温持久强度试验后组织变化对性能的影响[J].动力工程学报,2012(11):898-902.
[16] Panait, C.G.;Zielińska-Lipiec, A.;Koziel, T.;Czyrska-Filemonowicz, A.;Gourgues-Lorenzon, A.-F.;Bendick, W. .Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600°C for more than 100,000h[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2010(16/17):4062-4069.
[17] Leona Korcakova;John Hald;Marcel A.J. Somers .Quantification of Laves phase particle size in 9CrW steel[J].Materials Characterization,2001(2):111-117.
[18] O. Prat;J. Garcia;D. Rojas.The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels[J].Intermetallics,2013:362-372.
[19] 郝曼曼,彭碧草,王起江,张澜庭.T92钢在蠕变过程中Laves相的析出与熟化行为[J].机械工程材料,2011(10):32-35.
[20] 石如星,刘正东.P92钢中Laves相强化作用的研究[J].物理测试,2011(04):5-9.
[21] Srinivas Prasad, S.P.;Rajkumar, R.;Hari Kumar, H.K..Numerical simulation of precipitate evolution in ferriticmartensitic power plant steels[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2012:1-7.
[22] 张红军,周荣灿,范长信.Laves相对P92钢冲击韧性影响的试验研究[J].动力工程学报,2012(01):84-88.
[23] Li, S.;Eliniyaz, Z.;Sun, F.;Shen, Y.;Zhang, L.;Shan, A..Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:882-888.
[24] 何肇基.金属力学性能[M].北京:冶金工业出版社,1982
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%