欢迎登录材料期刊网

材料期刊网

高级检索

通过动态质量损失法腐蚀试验获取BP神经网络的样本数据。利用Matlab的工具箱函数建立了拓扑结构为4×15×8×1的BP神经网络,并对网络模型的预测精度和应用进行了研究。结果表明,在样本集和训练条件下,4×15×8×1型BP网络能较好地反映腐蚀时间、合金铸铁主要合金成分与腐蚀深度之间的非线性关系。可用于合金铸铁在高温浓碱液中的动态腐蚀性能的预测;当稀土和铜质量分数较低且适量时,其耐碱蚀作用较显著,而镍质量分数越高耐碱蚀作用越明显。

The sample data of BP neural network were measured by the dynamic hydrometer method. The 4 × 15 × 8× 1 BP neural network model was established by the toolbox function of Matlab, and the prediction precision and application of network model were studied. The results showed that under this sample set and training condition, 4 × 15 × 8× 1 BP neural network model reflected the non-linear relationship between corrosion time and main components of alloy cast iron and corrosion depth very well, and it was used to predict dynamic corrosive nature of alloy cast iron in high temperature concentrated alkaline solution. When rare earth and copper contents were relatively low and proper, the caustic corrosion resistance function of rare earth and copper was comparatively obvious, the higher the nickel content, the obvious the caustic corrosion resistance function.

参考文献

[1] 柯伟.中国工业与自然环境腐蚀调查[J].全面腐蚀控制,2003(01):1-10.
[2] 乌日根,董俊慧,王玉荣,张毅.稀土镍铜合金铸铁耐碱腐蚀性能研究[J].铸造,2008(05):494-497.
[3] 刘建军,庞宝春,高新琛,刘艳侠.基于BP神经网络的镍基合金腐蚀性能的预测分析[J].辽宁大学学报(自然科学版),2009(04):319-321.
[4] 周慧,王晓光,张有君.输气管道腐蚀速率的BP神经网络组合预测方法[J].腐蚀科学与防护技术,2010(03):162-165.
[5] 乌日根,董俊慧,朱霞.稀土对镍铜合金铸铁耐碱蚀性能的影响[J].热加工工艺,2005(11):61-62.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%