欢迎登录材料期刊网

材料期刊网

高级检索

用BP人工神经网络及材料微观分析方法研究了热处理工艺对P20钢硬度的影响.结果表明,BP网络能根据淬火及回火温度精确预测P20钢热处理后的硬度;BP网络预测结果表明,P20钢经800~920℃淬火及530~650℃回火,在给定的淬火温度下,随回火温度的增加硬度急剧降低;在给定的回火温度下,随淬火温度的增加硬度略有增加.材料微观分析表明:这主要归因于回火温度升高造成的碳化物长大和α相的回复程度的加剧及淬火温度升高造成的碳及合金元素固溶量的增加.

The effects of heat treatment process on hardness of P20 steel were studied using an artificial neural network model with back propagation algorithm(BP network)and microstructure analysis method.The results show that BP network can be used to predict the hardness of P20 steel accurately according to quenching and tempering temperature.Results of the prediction indicate that hardness of the steel decreases with increasing tempering temperature at a given quenching temperature,and increases slightly with increasing quenching temperature at a given tempering temperature,when the steel is quenched at 800~920℃ and tempered at 530~650℃.It is confirmed that the change of hardness is attributed to carbide coarsening and a phase recovering with increase of tempering temperature and higher content of carbon and alloy elements in austenite with increasing quenching temperature based on microstructure observation.

参考文献

[1] CUI Xiang-hong,SHAN Jun,YANG Zi-run,WEI Min-xian,WANG Shu-qi,DONG Chuang.Alloying Design for High Wear-Resistant Cast Hot-Forging Die Steels[J].钢铁研究学报(英文版),2008(04):67-72.
[2] Luo Y;Wu XC;Wang HB;Min YA .Study on microstructure and hardness uniformity of non-quenched prehardened steel for large section plastic mould[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):205-210.
[3] 宋义全,于健,刘宗昌,张丽颖,范秀风.P20塑料模具钢的回火组织与硬度[J].包头钢铁学院学报,2003(01):42-45.
[4] 姚新,顾剑锋,胡明娟.P20钢大型塑料模具几种淬火工艺的三维温度与组织模拟[J].金属热处理,2003(07):33-37.
[5] 陈蕴博,岳丽杰.机械工程材料优选方法的研究现状[J].机械工程学报,2007(01):19-24.
[6] M. Col;H.M. Ertunc;M. Yilmaz .An artificial neural network model for toughness properties in microalloyed steel in consideration of industrial production conditions[J].Materials & Design,2007(1):488-495.
[7] Mandal S;Sivaprasad PV;Venugopal S;Murthy KPN;Raj B .Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):571-580.
[8] Genel K;Ozbek I;Kurt A et al.Boriding response of AISI W1 steel and use of artificial neural network for prediction of borided layer properties[J].Surface and Coatings Technology,2002,160(01):38-43.
[9] L. A. Dobrzanski;M. Kowalski;J. Madejski .Methodology of the mechanical properties prediction for the metallurgical products from the engineering steels using the Artificial Intelligence methods[J].Journal of Materials Processing Technology,2005(0):1500-1509.
[10] XU Liu-jie;XING Jian-dong;WEI Shi-zhong et al.Optimization of heat treatment technique of high-vanadium high-speed steel based on backpropagation neural networks[J].Materials & Design,2007,28(05):1425-1432.
[11] 由伟,白秉哲,方鸿生,谢锡善.用人工神经网络模型预测钢的奥氏体形成温度[J].金属学报,2004(11):1133-1137.
[12] 崔忠圻.金属学与热处理[M].北京:机械工业出版社,1989:264,284.
[13] 陈红桔;刘清友 .模具钢P20的动态断裂韧性[J].钢铁研究学报,1998,10(02):46-50.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%