翘曲变形是注塑制品的一种严重缺陷,而工艺参数直接影响制品的质量,因此建立翘曲与工艺参数之间的关系模型并求得最优的工艺参数对制品质量的改善非常关健.文中运用Fractional Factorial方法从众多的实脸因子中找出与塑件翘曲量密切相关的独立因子和交互因子,然后采用具有高度非线性识别能力的人工神经网络与遗传算法相结合的方法,建立塑件翘曲量与主要影响工艺参数之间的关系模型.将人工神经网络预测结果和计算机辅助工程软件模拟结果进行比较和误差分析,显示出该方法的可靠性.实验结果表明,该方法能明显提高塑件的质量,通过优化可使翘曲量减小74.06%.
参考文献
[1] | 申长雨,王利霞,张勤星.神经网络与混合遗传算法结合的注塑成型工艺优化[J].高分子材料科学与工程,2005(05):23-27. |
[2] | B. Ozcelik;T. Erzurumlu .Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm[J].Journal of Materials Processing Technology,2006(3):437-445. |
[3] | Hasan Kurtaran;Babur Ozcelik;Tuncay Erzurumlu .Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm[J].Journal of Materials Processing Technology,2005(2):314-319. |
[4] | Hasan Kurtaran;Ttancay Erzurumlu .Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm[J].The International Journal of Advanced Manufacturing Technology,2006(5/6):468-472. |
[5] | Sadeghi B.H.M.; .A BP-neural network predictor model for plastic injection molding process[J].Journal of Materials Processing Technology,2000(3):411-416. |
[6] | Woll SLB;Cooper DJ .Pattern-based closed-loop quality control for the injection molding process[J].Polymer engineering and science,1997(5):801-812. |
[7] | D. F. Cook;C. T. Ragsdale;R. L. Major .Combining a neural network with a genetic algorithm for process parameter optimization[J].Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation,2000(4):391-396. |
[8] | C. R. Chen;H. S. Ramaswamy .Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms[J].Journal of Food Engineering,2002(3):209-220. |
[9] | Xuehong Lu;Lau Soo Khim .A statistical experimental study of the injection molding of optical lenses[J].Journal of Materials Processing Technology,2001(1/3):189-195. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%