为了研究铈,钇离子注入对纯锆耐蚀性的影响,纯锆样品用MEVVA源以40 kV注入1×1016 ions/cm2至1×1017 ions/cm2剂量的钇和铈,注入最高温度约为150℃.用X光电子谱仪(XPS)分析注入表层元素的价态;在1 mol/L硫酸溶液中3次极化测量来研究注入样品的耐蚀性.对于钇离子注入,当注入剂量大于5×1016 ions/cm2时,注入样品的耐蚀性显著提高.用掠角X射线衍射(GAXRD)研究氧化膜中由于铈离子注入发生的相转移.三次极化测量表明注铈样品与空白样品相比,耐蚀性下降许多.最后分别对注入钇和铈样品的腐蚀行为机理进行了探讨.
In order to study the influences of ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted by yttrium and cerium ions with a fluence range from 1×1016 to 1×1017 ions/cm2 at about 150℃, using MEVVA source at an extracted voltage of 40 kV. The valence of the surface layer was analyzed by X-ray photoelectron spectroscopy (XPS), three-sweep potentiodynamic polarization measurement was used to investigate the aqueous corrosion resistance of zirconium in a 1 mol/L H2SO4 solution. It is found that a significant improvement can be achieved in the aqueous corrosion behavior of zirconium compared with that of the as-received zirconium, when implanted yttrium ions fluence is more than 5×1016 ions/cm2. Glancing angle X-ray diffraction (GAXRD) was used to examine the phase transformation due to the cerium ion implantation in the oxide films. It was found that a remarkable decline in the aqueous corrosion behavior of zirconium implanted with cerium ions compared with that of the as-received zirconium. Finally, the mechanisms of the corrosion resistance behavior of the yttrium and cerium implanted zirconium are discussed respectively.
参考文献
[1] | 李中奎,刘建章,李佩志.新锆合金在两种不同介质中的耐蚀行为[J].稀有金属材料与工程,1999(02):101-104. |
[2] | 李中奎,周廉,李佩志,张建军,薛祥义,宋启忠.表面状态对Zr4合金抗疖状腐蚀性能的影响[J].稀有金属材料与工程,1999(06):380-382. |
[3] | 杨芳林,张建军,宋启忠.锆合金管材氢化物生长方式的研究[J].稀有金属材料与工程,1999(04):214. |
[4] | Mccaffert E et al.[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials and Atoms,1991,56/57:639. |
[5] | Etoh Y;Shimada S et al.[J].Science and Tech Bulletin,1992,29(12):1173. |
[6] | Xu Jian;Bai Xinde;Fan Yudian 等.[J].Journal of Materials Science,2000,35:6225-6229. |
[7] | Xu Jian;Bai Xinde;Jin An 等.[J].Journal of Materials Science Letters,2000,19:1633-1635. |
[8] | Shworth V;Baxter D;Grant W A et al.Procter and T C Wellington[J].Corrosion Science,1976,16:775. |
[9] | Huble G K;Mccafferty E .[J].Corrosion Science,1980,20:103. |
[10] | Bai X D;Zhu D H;Liu B X .[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials and Atoms,1995,103:440. |
[11] | Sugizaki Y;Yasunaga T;Tomari H .[J].Surface and Coatings Technology,1996,83:167. |
[12] | Stroosnijder M F;Sunderkotter J D;Cristobal M J et al.[J].Surface and Coatings Technology,1996,83:205. |
[13] | Cristobal M J et al.[J].Corrosion Science,1996,38:805. |
[14] | He Fei;Bai Xinde;Xu Jian 等.[J].Journal of Materials Science Letters,1999,18:715-717. |
[15] | Tian W;Cai W P;Li J;Wu R .[J].Materials Science and Engineering A,1989,116:5. |
[16] | POURBAIX M.Atlas of Electrochemical Equilibria in Aqueous Solutions[M].T X:NACE Houstan,1974:223. |
[17] | Baes C F J R;Mesmer R E.The Hydrolysis of Cations[M].New York:wiley,197 |
[18] | Bai X D;Wang S G;He J H;Chen H M , et al.[J].Chinese Journal of Nuclear Science and Engineering,1996,16(03):243. |
[19] | He J H;Bai X D;Ma C L;Chen H M .[J].Nuclear Instruments and Methods B,1995,100:59. |
[20] | Stimming U .[J].Electrochimica Acta,1986,31(04):415. |
[21] | Shirvington P J .[J].Nuclear J Mater,1970,37:177. |
[22] | Ploc R A .[J].Journal of Nuclear Materials,1980,919:322. |
[23] | Przybylski K;Farrattreed A J;Yurek F J .[J].Journal of the Electrochemical Society,1988,135:50. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%