欢迎登录材料期刊网

材料期刊网

高级检索

为了研究铈,钇离子注入对纯锆耐蚀性的影响,纯锆样品用MEVVA源以40 kV注入1×1016 ions/cm2至1×1017 ions/cm2剂量的钇和铈,注入最高温度约为150℃.用X光电子谱仪(XPS)分析注入表层元素的价态;在1 mol/L硫酸溶液中3次极化测量来研究注入样品的耐蚀性.对于钇离子注入,当注入剂量大于5×1016 ions/cm2时,注入样品的耐蚀性显著提高.用掠角X射线衍射(GAXRD)研究氧化膜中由于铈离子注入发生的相转移.三次极化测量表明注铈样品与空白样品相比,耐蚀性下降许多.最后分别对注入钇和铈样品的腐蚀行为机理进行了探讨.

In order to study the influences of ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted by yttrium and cerium ions with a fluence range from 1×1016 to 1×1017 ions/cm2 at about 150℃, using MEVVA source at an extracted voltage of 40 kV. The valence of the surface layer was analyzed by X-ray photoelectron spectroscopy (XPS), three-sweep potentiodynamic polarization measurement was used to investigate the aqueous corrosion resistance of zirconium in a 1 mol/L H2SO4 solution. It is found that a significant improvement can be achieved in the aqueous corrosion behavior of zirconium compared with that of the as-received zirconium, when implanted yttrium ions fluence is more than 5×1016 ions/cm2. Glancing angle X-ray diffraction (GAXRD) was used to examine the phase transformation due to the cerium ion implantation in the oxide films. It was found that a remarkable decline in the aqueous corrosion behavior of zirconium implanted with cerium ions compared with that of the as-received zirconium. Finally, the mechanisms of the corrosion resistance behavior of the yttrium and cerium implanted zirconium are discussed respectively.

参考文献

[1] 李中奎,刘建章,李佩志.新锆合金在两种不同介质中的耐蚀行为[J].稀有金属材料与工程,1999(02):101-104.
[2] 李中奎,周廉,李佩志,张建军,薛祥义,宋启忠.表面状态对Zr4合金抗疖状腐蚀性能的影响[J].稀有金属材料与工程,1999(06):380-382.
[3] 杨芳林,张建军,宋启忠.锆合金管材氢化物生长方式的研究[J].稀有金属材料与工程,1999(04):214.
[4] Mccaffert E et al.[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials and Atoms,1991,56/57:639.
[5] Etoh Y;Shimada S et al.[J].Science and Tech Bulletin,1992,29(12):1173.
[6] Xu Jian;Bai Xinde;Fan Yudian 等.[J].Journal of Materials Science,2000,35:6225-6229.
[7] Xu Jian;Bai Xinde;Jin An 等.[J].Journal of Materials Science Letters,2000,19:1633-1635.
[8] Shworth V;Baxter D;Grant W A et al.Procter and T C Wellington[J].Corrosion Science,1976,16:775.
[9] Huble G K;Mccafferty E .[J].Corrosion Science,1980,20:103.
[10] Bai X D;Zhu D H;Liu B X .[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials and Atoms,1995,103:440.
[11] Sugizaki Y;Yasunaga T;Tomari H .[J].Surface and Coatings Technology,1996,83:167.
[12] Stroosnijder M F;Sunderkotter J D;Cristobal M J et al.[J].Surface and Coatings Technology,1996,83:205.
[13] Cristobal M J et al.[J].Corrosion Science,1996,38:805.
[14] He Fei;Bai Xinde;Xu Jian 等.[J].Journal of Materials Science Letters,1999,18:715-717.
[15] Tian W;Cai W P;Li J;Wu R .[J].Materials Science and Engineering A,1989,116:5.
[16] POURBAIX M.Atlas of Electrochemical Equilibria in Aqueous Solutions[M].T X:NACE Houstan,1974:223.
[17] Baes C F J R;Mesmer R E.The Hydrolysis of Cations[M].New York:wiley,197
[18] Bai X D;Wang S G;He J H;Chen H M , et al.[J].Chinese Journal of Nuclear Science and Engineering,1996,16(03):243.
[19] He J H;Bai X D;Ma C L;Chen H M .[J].Nuclear Instruments and Methods B,1995,100:59.
[20] Stimming U .[J].Electrochimica Acta,1986,31(04):415.
[21] Shirvington P J .[J].Nuclear J Mater,1970,37:177.
[22] Ploc R A .[J].Journal of Nuclear Materials,1980,919:322.
[23] Przybylski K;Farrattreed A J;Yurek F J .[J].Journal of the Electrochemical Society,1988,135:50.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%