晶体相场模型作为一种新的模拟技术,较之传统的模拟方法如分子动力学和标准相场模型具有无法比拟的优势,能够在原子长度尺度和扩散时间尺度上模拟材料的微观结构转变.详述了晶体相场模型原理,并从弹塑性变形、晶体形核与长大以及液相外延生长等方面论述了晶体相场模型的研究状况,指明了模型的进一步研究方向及应用前景.
参考文献
[1] | 张跃;谷景华;尚家香.计算材料学基础[M].北京:北京航空航天大学出版社,2007 |
[2] | 罗伯·D;项金钟;吴兴惠.计算材料学[M].北京:化学工业出版社,2002 |
[3] | Chen L Q .Phase-field models for microstrueture evolution[J].Annual Review of Materials Research,2002,32:113. |
[4] | Wang Y Z;Li J .Phase field modeling of defects and deformation[J].Acta Materialia,2010,58:1212. |
[5] | Moelans, N;Blanpain, B;Wollants, P .An introduction to phase-field modeling of microstructure evolution[J].Calphad,2008(2):268-294. |
[6] | N. MOELANS .A PHASE-FIELD MODEL FOR MULTI-COMPONENT AND MULTI-PHASE SYSTEMS[J].Archives of Metallurgy and Materials,2008(4):1149-1156. |
[7] | Herve Henry;Herbert Levine .Dynamic Instabilities of Fracture under Biaxial Strain Using a Phase Field Model[J].Physical review letters,2004(10):105504.1-105504.4. |
[8] | Rodney D;Bouar Y L;Find A .Phase field method and dislocations[J].Acta Materialia,2003,51(01):17. |
[9] | Vedantam S;Mallick A .Phase-field theory of grain growth in the presence of mobile second-phase particles[J].Acta Materialia,2010,58:272. |
[10] | Zaeem M A;Kadiri H E;Wang P T et al.Investigating of effects of grain boundary energy anisotropy and secondphase particles on grain growth using a phase-field model[J].Computational Materials Science,2011,50(08):2488. |
[11] | N. Provatas;J.A. Dantzig;B. Athreya .Using the Phase-Field Crystal Method in the Multi-Scale Modeling of Microstructure Evolution[J].JOM,2007(7):83-90. |
[12] | Elder KR;Provatas N;Berry J;Stefanovic P;Grant M .Phase-field crystal modeling and classical density functional theory of freezing[J].Physical review, B. Condensed matter and materials physics,2007(6):4107-1-4107-14-0. |
[13] | Moelans N;Blanpain B;Wollants P .Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[J].Physical review, B. Condensed matter and materials physics,2008(2):024113-1-024113-23-0. |
[14] | Hirouchi T;Takaki T;Tomita Y.Phase field crystal simulations during plastic deformation of nanopolycrystalline metal[A].Kyoto,Japan,2007 |
[15] | Stefanovic P;Haataja M;Provatas N .Phase field crystal study of deformation and plasticity in nanocrystalline materials[J].Physical Review E,2009,80:046107. |
[16] | Elder KR;Grant M .Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(5 Pt.1):1605-1-1605-18-0. |
[17] | Wu K A;Adland A;Karma A .Phase-field-crystal model for fee ordering[J].Physical Review E,2010,81:061601. |
[18] | Athreya BP;Goldenfeld N;Dantzig JA;Greenwood M;Provatas N .Adaptive mesh computation of polycrystalline pattern formation using a renormalization-group reduction of the phase-field crystal model[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2007(5 Pt.2):056706-1-056706-14-0. |
[19] | Hirouchi, T;Takaki, T;Tomita, Y .Development of numerical scheme for phase field crystal deformation simulation[J].Computational Materials Science,2009(4):1192-1197. |
[20] | Elder KR.;Katakowski M.;Haataja M.;Grant M. .Modeling elasticity in crystal growth - art. no. 245701[J].Physical review letters,2002(24):5701-0. |
[21] | T. Hirouchi;T. Takaki;Y. Tomita .Effects of temperature and grain size on phase-field-crystal deformation simulation[J].International Journal of Mechanical Sciences,2010(2):309-319. |
[22] | Zheng C;Zhang YW .Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):97-101. |
[23] | Haslam A J;Moldovan D;Yarnakov V et al.Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation[J].Acta Materialia,2003,51:2091. |
[24] | Tang S;Backofen R;Wang J C et al.Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth[J].Journal of Crystal Growth,2011,334:146. |
[25] | Prieler, R;Hubert, J;Li, D;Verleye, B;Haberkern, R;Emmerich, H .An anisotropic phase-field crystal model for heterogeneous nucleation of ellipsoidal colloids[J].Journal of Physics. Condensed Matter,2009(46):464110:1-464110:7. |
[26] | Teeffelen S V;Backofen R;Voigt A et al.Derivation of the phase-field-crystal model for colloidal solidification[J].Physical Review E,2009,79:051404. |
[27] | Tóth, G.I.;Tegze, G.;Pusztai, T.;Tóth, G.;Gránásy, L. .Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D[J].Journal of Physics. Condensed Matter,2010(36):364101-1-364101-17. |
[28] | Yu Y M;Backofen R;Voigt A .Morphological instability of heteroepitaxial growth on vicinal substrates:A phase-field crystal study[J].Journal of Crystal Growth,2011,318:18. |
[29] | Elder K R;Huang Z F;Provatas N .Amplitude expansionof the binary phase field crystal model[J].Physical Review E,2010,81:011602. |
[30] | Elder, K.R.;Huang, Z.-F. .A phase field crystal study of epitaxial island formation on nanomembranes[J].Journal of Physics. Condensed Matter,2010(36):364103-1-364103-6. |
[31] | Granasy, L.;Tegze, G.;Toth, G.I.;Pusztai, T. .Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning[J].Philosophical magazine: structure and properties of condensed matter,2011(1/3):123-149. |
[32] | Stefanovic P;Haataja M;Provatas N .Phase-field crystals with elastic interactions[J].Physical review letters,2006(22):5504-1-5504-4-0. |
[33] | Huang, Z.-F.;Elder, K.R.;Provatas, N. .Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(2 Pt.1):021605-1-021605-22. |
[34] | Jaatinen A;Achim C V;Elder K R et al.Thermodynamics of bcc metals in phase-field-crystal models[J].Physical Review E,2009,80:031602. |
[35] | Hu, Z.;Wise, S.M.;Wang, C.;Lowengrub, J.S. .Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation[J].Journal of Computational Physics,2009(15):5323-5339. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%