通过直流与脉冲电沉积分别制备平均晶粒度为20~30 nm,宽晶粒度分布(5~120 nm)的纳米镍.在室温静拉伸应变速率范围内,直流电沉积制备的纳米镍的平均抗拉强度和平均断裂延伸率分别为1176 MPa与10.6%.而由脉冲电沉积技术制备的纳米镍抗拉强度可达1500 MPa之上,最高断裂延伸率可达13.3%.与电沉积获得的普通窄晶粒度分布的纳米镍相比,宽晶粒度分布的纳米镍的塑性要高出100%以上.其原因是大型晶粒内部允许位错的存在,且理论计算表明,晶内位错可通过Frank-Read源机制进行增殖.
The flawless nanocrystalline (nc) Ni with a broad grain size distribution ranging from 5 to 120 nm and an average grain size of 20-30 nm were prepared by direct current and pulse electrodeposition, respectively. In the region of room-temperature static tensile strain rates, for the nc Ni prepared by direct current electrodeposition, the average ultimate tensile strength and the average elongation to failure are 1176 MPa and 10.6%, respectively. While for the nc Ni prepared by pulse electrodeposition, the ultimate tensile strength exceeds 1500 MPa and the max elongation to failure reaches 13.3%. In contrast to the typical electrodeposited nc Ni with a narrow grain size distribution below 50 nm, the ductility is increased by more than 100% for the present nc Ni samples. This enhancement can be interpreted by the reason that dislocations can exist and multiply in the large grains by the mechanism of Frank-Read source in the plastic deformation process revealed by theoretical calculation.
参考文献
[1] | Wang N;Wang Z;Aust KT et al.[J].Materials Science and Engineering A,1997,237:150. |
[2] | Dalla Torre F;Van Swygenhoven H;Victoria M .[J].Acta Materialia,2002,50:3957. |
[3] | Kumar K S;Suresh S;Chisholm M F et al.[J].Acta Materialia,2003,51:387. |
[4] | Schwaiger R;Moser B;Dao M et al.[J].Acta Materialia,2003,51:5159. |
[5] | Fan G J;Fu L F;Wang G Y et al.[J].Journal of Alloys and Compounds,2007,434-435:298. |
[6] | Legros M.;Rittner MN.;Weertman JR.;Hemker KJ.;Elliott BR. .Microsample tensile testing of nanocrystalline metals[J].Philosophical Magazine.A.Physics of condensed matter, defects and mechanical properties,2000(4):1017-1026. |
[7] | Wang Y M;Cheng S;Wei Q M et al.[J].Scripta Materialia,2004,51:1023. |
[8] | Ramesh K. Guduru;K. Linga Murty;Khaled M. Youssef .Mechanical behavior of nanocrystalline copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):14-21. |
[9] | Tai Hong Yim;Seung Chae Yoon;Hyoung Seop Kim .Tensile properties of electrodeposited nanocrystalline nickel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):836-840. |
[10] | Gu C D;Lian J S;Jiang Z H et al.[J].Scripta Materialia,2006,54:579. |
[11] | Misra A;Zhang X;Hammon D et al.[J].ACTA MATERIALIA,2005,53:221. |
[12] | 徐恒钧.材料科学基础[M].Beijing:Beijing University of Technology Press,2001:366. |
[13] | Wang Y;Chen M;Zhou F;Ma E .High tensile ductility in a nanostructured metal.[J].Nature,2002(6910):912-915. |
[14] | Froseth A G;Derlet P M;Van Swygenhoven H .[J].Acta Materialia,2004,52:5863. |
[15] | Wu X;Zhu YT;Chen MW;Ma E .Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni[J].Scripta materialia,2006(9):1685-1690. |
[16] | Budrovic Z;Van Swygenhoven H;Derlet PM;Van Petegem S;Schmitt B .Plastic deformation with reversible peak broadening in nanocrystalline nickel[J].Science,2004(5668):273-276. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%